Skip to main content

Understanding Lubrication Fundamentals

Basic Fluid Lubrication and Protection Fundamentals

Different methods of lubrication protect machines from wear.

Lubrication of worm gear

Gear oil on gear example

_by David Hilgendorf

The primary function of fluid lubrication is to provide a durable film that protects moving parts by reducing friction and wear between surfaces; however, the level of protection provided is enabled by different methods of lubrication:

The reduction of friction by using a fluid can be divided into two basic types: full-film and thin-film. Full-film lubrication consists of four sub-types and thin-film lubrication consists of two sub-types.

Full-film lubrication

  • Hydrodynamic
  • Elastohydrodynamic
  • Hydrostatic-film
  • Squeeze-film

Thin-film lubrication

  • Boundary
  • Mixed-film

We’ll discuss the differences in that order:

Hydrodynamic lubrication

Hydrodynamic, or full-film, lubrication exists when two surfaces are completely separated by an unbroken lubricant film so there is no metal-to-metal contact. The movement of the rolling or sliding action causes the film to become thicker and pressurized, which prevents the surfaces from touching.

When the two surfaces are moving in opposite directions, the fluid immediately next to each surface will travel at the same speed and direction as the surface. If two parts are moving in the same direction, a full hydrodynamic film can be formed by wedging a lubricant between the moving parts. Known as wedging film action, this principle allows large loads to be supported by the fluid. It works much like a car tire hydroplaning on a wet road surface. During reciprocating motion, where the speeds of the relative surfaces eventually reach zero as the direction changes, the wedging of the lubricant is necessary to maintain hydrodynamic lubrication.

The lubricant’s viscosity assumes responsibility for most of the wear protection and additives play a limited role. Although full-film lubrication prevents metal-to-metal contact, abrasive wear or scratching can still occur if dirt particles penetrate the lubricating film. Additional factors, such as load increases, can prevent hydrodynamic lubrication by decreasing the oil film thickness, allowing metal-to-metal contact to occur.

Engine components operating with full-film lubrication include the crankshaft, camshaft and connecting rod bearings, and piston pin bushings. Under normal loads, transmission and rear-axle bearings also operate under hydrodynamic lubrication.

Hydrodynamic lubrication diagram graphic

Hydrodynamic lubrication diagram graphic

Elastohydrodynamic lubrication

Elastohydrodynamic (EHD) lubrication is another form of full-film lubrication that exists when the lubricant reacts to pressure or load and resists compression, functioning as if it were harder than the metal surface it supports. As viscosity increases under pressure, the film becomes more rigid, creating a temporary elastic deformation of the surfaces. EHD occurs in the area where the most pressure or load affects the component. In roller bearings, for example, the metal surface deforms from the extreme pressure of the lubricant

The lubricant’s viscosity and additives work together to protect surfaces in an EHD system. Anti-wear additives are often used to protect engine bearings in high-load conditions, while both anti-wear and extreme-pressure additives work to protect gears in high-load conditions.

Hydrostatic-film lubrication

Hydrostatic-film lubrication is a full-film lubrication method common in heavily loaded applications that require a supply of high-pressure oil film. The high pressure in hydrostatic-film lubrication ensures that the required film thickness will be maintained to support a heavy load during extreme operation. Hydrostatic-film lubrication maintains a fluid film under high-load and low-speed conditions, such as those experienced at equipment startup.

Squeeze-film lubrication

Squeeze-film lubrication is a form of full-film lubrication that results from pressure that causes the top load plate to move toward the bottom load plate. As these surfaces move closer together, the oil moves away from the heavily loaded area.

As load is applied, the viscosity of the lubricant increases, enabling the oil to resist the pressure to flow out from between the plates. Eventually, the lubricant will move to either side, resulting in metal-to-metal contact. A piston pin bushing is a good example of squeeze-film lubrication.

Boundary lubrication

Boundary lubrication is a form of thin-film lubrication and occurs when a lubricant’s film becomes too thin and contact between the surface’s asperities occurs. Excessive loading, high speeds or a change in the fluid’s characteristics can result in boundary lubrication.

No surface is truly smooth, even when polished to a mirror finish. The irregularities, or asperities, on every surface may be so small that they are only visible under a microscope. When two highly polished surfaces meet, only some of these asperities on the surfaces touch, but when force is applied at right angles to the surfaces (called a normal load), the number of contact points increases.

Boundary lubrication often occurs during the start-up and shutdown of equipment. In these cases, chemical compounds enhance the properties of the lubricating fluid to reduce friction and provide wear protection. For instance, anti-wear additives protect the cam lobes, cylinder walls and piston rings in engine high-load conditions, while anti-wear and extreme-pressure additives protect ring and pinion gears in rear axles.

Other lubrication

Mixed-film lubrication is considered a form of thin-film lubrication, although it is a combination of hydrodynamic and boundary lubrication. In mixed-film lubrication, only occasional asperity contact occurs.

Solid-film lubrication is used in applications that are difficult to lubricate with oils and greases. To manage these difficult applications, solid- or dry-film lubrication is applied where the solid or dry material attaches to the surface to reduce roughness. Solid-film lubricants fill the valleys and peaks of a rough surface to prevent metal-to-metal contact. Common solid-film lubricants include graphite, molybdenum disulfide (MoS2, aka moly) and polytetrafluoroethylene (PTFE), also known as Teflon.*

 

AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear. AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear.

AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear.

video
play-sharp-fill

What’s the Best Oil for My Snowblower?

What’s the Best Oil for My Snowblower?

Using a high-quality, purpose-built oil can provide extra protection for your snowblower’s engine.

_by Brad Nelson|November 10, 2023

When a snowstorm hits, you need your snowblower to fire up and help you get the job done. But snowblower engines face unique challenges that can reduce their dependability, horsepower and longevity. Fortunately, there are maintenance practices that can vastly improve reliability, including using a specially engineered small-engine oil.

Using a high-quality, purpose-built small-engine oil can help improve the reliability and performance of your snowblower.

Tough on Oil

Although snowblower engines are used less frequently than other engines, they’re tougher on oil than most people realize.

Compared to liquid-cooled automotive engines, small engines usually lack oil filters, run hotter, operate under constant heavy load, generate more oil-damaging contaminants and are exposed to snow, water and extreme temperatures.

Snowblower engines are often stored in unheated garages or sheds where cold temperatures cause the oil to flow slower at startup, a key driver of engine wear.

Using a high-quality, purpose-built oil can provide extra protection for your snowblower’s engine, reducing the risk of component damage and prolonging its life.

However, most small-engine oils we’ve tested are nothing more than re-labeled automotive oils, which are formulated in large part to enhance fuel economy, not to survive the brutal operating conditions of a snowblower engine.

Although small engines are often used infrequently, they’re tougher on oil than most people realize.

Purpose-Built Protection

AMSOIL 100% Synthetic Small-Engine Oil isn’t a re-packaged automotive oil. We specially engineered it from the ground up for small-engine dependability. It’s built to solve the problems that plague small engines, including wear, power loss, oil consumption, harmful carbon deposits and stuck rings and valves.

Excellent Wear Protection

AMSOIL Synthetic Small-Engine Oil is a shear-stable, high-film-strength formulation fortified with a heavy dose of anti-wear additives. It does not thin out due to mechanical shear, ensuring a thick lubricating film. It forms a durable barrier that protects against metal-to-metal contact.

video
play-sharp-fill

Formulated for Power

Engine wear, carbon deposits, valve sticking and piston-ring sticking reduce engine power. AMSOIL Synthetic Small-Engine Oil prevents ring and valve sticking while helping eliminate carbon deposits from forming. As a result, engines produce maximum power throughout their service lives, helping you move more snow faster.

Extreme-Temperature Performance

AMSOIL 100% Synthetic Small-Engine Oil is formulated with a saturated molecular structure that offers outstanding extreme-heat resistance.

In addition, we’ve fortified the oil with potent antioxidant additives that provide further resistance to damaging heat.

Its powerful detergent additives fight carbon, varnish and sludge to maximize engine life.

In extreme cold, the oil’s naturally high viscosity index and lack of paraffins (waxes) ensure it remains fluid and flows quickly, providing easier cold-weather starts and fast startup lubrication for reduced wear.

Reduces Oil Consumption

In lab testing, AMSOIL 10W-30 Synthetic Small-Engine Oil reduced oil consumption 61% compared to three leading 10W-30/SAE 30 motor oils.¹

Its heat-resistant synthetic base oils provide low volatility, excellent viscosity stability and strong oxidation resistance.

Engines run longer between top-offs, providing peace of mind your engine won’t fail due to oil starvation and will run dependably.

Let it Snow

Prepare your snowblower engine for the next big storm with a specially engineered small-engine oil. AMSOIL 100% Synthetic Small-Engine Oil provides extra protection for your snowblower engine so you can throw snow like its no big deal all winter long.

¹Based on 125-hour lab tests of small engines using AMSOIL 10W-30 Synthetic Small-Engine Oil and three leading 10W-30/SAE 30 motor oils.