Skip to main content

Ultimate Protection for Competition Diesel Engines

Ultimate Protection for Competition Diesel Engines

Whether competing in sled pulls, drag races or dyno challenges, competitors using DOMINATOR® 20W-50 Competition Diesel Oil enjoy the confidence and security that come with providing their diesel trucks maximum protection and performance.

Racing and high-performance diesel engines are modified to deliver maximum horsepower and torque. Their powerful designs create shearing forces that can cause oils to lose viscosity, leaving bearings, pistons and other components vulnerable to wear and failure. DOMINATOR Competition Diesel Oil delivers 50 percent more film thickness* to withstand high cylinder pressures and protect against wear. It is heavily fortified with zinc and phosphorus anti-wear additives to provide additional protection against scuffing and wear in severe conditions.

  • Competition-grade technology formulated specifically to deliver maximum power and protection in performance-modified diesel engines
  • Extra zinc and phosphorus for bulletproof wear protection
  • Fights oil breakdown under the extreme temperatures and pressures of competition, extending the lives of cylinders, rings, cranks, rods, turbochargers and bearings
  • High-viscosity formulation provides an extra level of protection, while offsetting the negative effects of fuel dilution
  • Delivers superior shear stability to withstand the intense stress and compression common to high-horsepower diesel trucks
  • May be used in any diesel engine calling for an API CK-4, CJ-4, CI-4+ or CH-4 diesel oil

 

*compared to the 3.5cP HTHS limit for SAE 15W-40

Not kept in stock at this time as it’s a niche product. Call ahead and order and we’ll have it here in 2-3 days or shipped to your door at the best price.

Engine start-stop technology – Major Wear Issues

Engine start-stop technology can increase bearing wear

Use only the best quality oil in these engines as the crankshaft needs to float. Even the “so called synthetics” don’t dampen the metal to metal issues mentioned below nearly as well as AMSOIL and you can tell due to the reduction in vibration or more consistent oil pressure as you rack up miles.

Yet another reason to upgrade to AMSOIL synthetic motor oil.

Matt Erickson | DIRECTOR, TECHNICAL PRODUCT MANAGEMENT

Nearly every technology shaping the auto industry can be traced to one goal: increased fuel economy. Engine start-stop technology is one more tool automakers have in their arsenals to ensure today’s vehicles meet tomorrow’s tightening fuel-economy regulations.

In principle, start-stop technology is simple: the engine automatically shuts off while you’re idling and restarts when you take your foot off the brake. This reduces fuel wasted while idling. Automakers introduced different startstop systems in the late ‘70s and early ‘80s; however, drivers found them awkward and unworthy of the higher vehicle price. Today’s start-stop systems are less obtrusive and are available on vehicle models from most automakers.

Should be called Metal to Metal Contact Engine

That’s not to say they’re without detractors. In fact, some automakers have installed off switches that allow motorists to disable the feature in response to negative driver feedback. But, despite their pitfalls, they’re likely not going anywhere. Consider these statistics:

  • According to bearing manufacturer MAHLE*, U.S. vehicles burned 3.9 billion gallons of gasoline while idling in 2017.
  • Buick* reports that engines with start-stop technology increase fuel economy 4-5 percent using the EPA test cycle.

Automakers leap for joy over minuscule fuel-economy gains, so you can bet they’re going to stick with anything that may provide a 4-5 percent boost.

So, what does that have to do with motor oil?

Maybe you’re aware that most engine wear occurs during cold starts. Well, engine wear occurs during warm starts, too, like every time an engine equipped with start-stop technology restarts.

We have to get technical to understand why.

The crankshaft spins thousands of times per minute in a running engine. As it spins, oil flows through tiny openings in the crankshaft journals and fills the spaces between the journals and main bearings. The crankshaft literally floats on an oil film and doesn’t contact the bearings. We call this scenario hydrodynamic lubrication. In this regime, the bearings suffer little wear and last a long time.

Run of the mill oils (95% on the shelf) are not going to provide protection with this condition

Stopping the engine, however, reduces oil film thickness. The crankshaft settles onto the bearing surfaces rather than floats over them. The oil film thickness shrinks to about the same thickness as the surface roughness of the crankshaft. This is called boundary lubrication. Starting the engine allows the microscopic peaks on the metal surfaces to contact and cause wear until the oil film has been reestablished and the crankshaft is once again floating over the bearings. This is where the oil’s additives play a huge role in protection.

Granted, only minimal wear may occur each time the engine is started. It’s not a big concern in a properly maintained traditional engine using a good oil. But what if you greatly increase engine startstop cycles?

Consider another statistic from MAHLE:

  • Start-stop cycles in equipped engines may triple over the engine’s lifetime compared to traditional engines.

That means three times more engine starts, three times more instances of boundary lubrication and three times more exposure to increased bearing wear.

Bearing wear can snowball out of control, too. Metal particles can break off and populate the oil. The bearing surface becomes rougher, encouraging adhesive wear in which peaks on metal surfaces grab and tear the mating surfaces. Eventually the crank journal and bearing can weld together, ruining the bearing.

This all points to a simple directive: make sure your customers with engines using start-stop technology are using AMSOIL synthetic motor oil to guard against bearing wear. Oil film thickness shrinks when engines start from a dead stop, placing even more importance on oil additives to maintain protection. Since engines equipped with start-stop technology spend so much more time under boundary lubrication, it’s vital to use an oil with superior film strength and additive quality. AMSOIL Signature Series Synthetic Motor Oil delivers. It provides 75% more engine protection against horsepower loss and wear** to help protect today’s advanced engines.

This is especially needed in vehicles calling for 0W-20, 5W-20 and 0W-16.

Ask AMSOIL: Should I Use Racing Oil in my Daily Driver?

I Drive Aggressive: Is Racing Oil a better choice for my Daily Driver?

Motorists who are passionate about engine protection and performance can easily succumb to the following line of reasoning:

1) Racing engines are more severe than my engine.

2) Racing engines use racing oil.

3) Therefore, I should use racing oil in my vehicle for best protection.

It’s true that the average racing engine creates operating conditions more severe than the average passenger car engine. However, that’s not to say that modern engines aren’t tough on oil, too.

Increased heat and stress

The turbocharged, direct-injection engines in modern vehicles generate increased heat and contaminants compared to their predecessors. Motor oil bears the brunt of the added stress. That’s why industry motor-oil specifications keep growing tougher and automakers are increasingly recommending synthetic oils to meet these strict performance specs.

Racing creates tougher operating conditions

Racing, however, is a whole different animal. The powerful, modified engines in racing vehicles produce extreme heat and pressures beyond the capabilities of the average car or truck. A 900-hp Pro 4×4 off-road racing truck can produce engine temperatures of more than 300ºF (149ºC). Engine temperatures in a typical passenger car/light truck fall somewhere between 195ºF and 220ºF (90ºC – 104ºC). The difference is even more striking when you consider that the rate of motor oil oxidation (chemical breakdown) doubles for every 18ºF (10ºC) increase in oil temperature.

The tremendous shearing forces the oil bears as it’s squeezed between the interfaces of the pistons/rings and cam lobes/lifters pose another problem. The pressure can tear apart the molecular structure of the oil, reducing its viscosity and film strength.

Racing oil must be formulated differently to protect these demanding engines. Even so, it doesn’t mean you should order a case of AMSOIL DOMINATOR® Synthetic Racing Oil for your car.

Racing oils are changed more frequently

Why? For starters, racing oils are changed frequently. Most professionals change oil every couple races, if not more frequently. For that reason, racing oils are formulated with a lower total base number (TBN) than passenger car motor oils. TBN is a measure of the oil’s detergency properties and its ability to neutralize acidic byproducts. Oils with longer drain intervals have higher TBNs. AMSOIL Signature Series Synthetic Motor Oil features a TBN of 12.5 to enable its 25,000-mile/one-year drain interval. In contrast, DOMINATOR Synthetic Racing Oil has a TBN of 8 since it should be changed more frequently. As great as it performs on the track, DOMINATOR is not what you want in your engine when you’re driving thousands of miles and several months between oil changes.

Second, you want to use an oil in your daily driver that excels in several performance areas:

  • Wear protection
  • Long oil life
  • Maximum fuel economy
  • Engine cleanliness
  • Corrosion protection
  • Oxidation resistance
  • Easy cold-temp starts

Motor oil additives produce many of these benefits. For example, anti-oxidant additives fight high heat and extend oil service life. Anti-wear additives interact with the metal surfaces of engine parts and guard against metal-to-metal contact. Many additives form layers on metal surfaces. That being the case, they compete for space, so to speak.

Racing oils use different additives

Racing oils are often formulated with a heavy dose of friction modifiers to add lubricity for maximum horsepower and torque. The boosted level of additives meant to increase protection and performance during a race doesn’t leave room in the formulation for additives found in passenger car motor oils that help maximize fuel economy, fight corrosion or improve cold-weather protection.

Achieving the tasks of a passenger car motor oil requires a finely balanced formulation. Too much or too little performance in one area can negatively affect other areas – and the oil’s overall protection and performance. The list of tasks required of a racing oil, however, is much shorter.

The right tool for the right job is an axiom with which most are familiar. The same holds for motor oil. It’s best to leave racing oil to competition engines and use a properly formulated passenger car motor oil for your daily vehicle.

To find the right oil for your vehicle, use the AMSOIL Product Guide.

Oil Analysis Kits – They’re Easy

How to Perform Oil Analysis

We keep these kits right here in the Omaha store. Ask for the one with postage or with out for a slight savings. When doing several vehicles use the one w/o postage to send all together.

Used oil analysis is one of the most potent tools in your vehicle-maintenance arsenal. It effectively provides a glimpse inside your engine to gauge lubricant and component condition without so much as removing a bolt or bloodying a knuckle. And it’s simple and inexpensive. Here’s how to perform oil analysis.

What is oil analysis?

First, let’s define our terms.

Oil analysis is the process of chemically analyzing a lubricant sample (typically used motor oil) to determine lubricant and engine or component condition.

You take a sample of the lubricant and ship it to a qualified laboratory. Technicians subject the lubricant to a range of tests to determine the concentration of wear metals, fuel dilution, the lubricant’s total base number (TBN), oxidation and other information. The lab sends you a report that shows lubricant condition and includes a brief explanation and recommendations for future service.

The benefits of oil analysis

Determining the condition of the oil inside your engine offers a number of benefits, all of which save you time, money and hassle in the future.

Maximize oil drain intervals

Monitoring the condition of the oil allows you to optimize drain intervals so you can capitalize on the fluid’s full service life. Performing fewer oil changes minimizes maintenance costs and, for businesses that depend on vehicle availability, maximizes uptime. It also vastly reduces the amount of waste oil you have to truck to the recycling facility, helping the environment.

Extend equipment life

Monitoring system cleanliness and filtration efficiency can help you keep your vehicles and equipment longer and significantly reduce replacement costs.

Prevent major problems

Oil analysis identifies dirt, wear particles, fuel dilution, coolant and other contaminants that can cause catastrophic failure or significantly shorten equipment life. Arming yourself with this information allows you to proactively fix problems before they spiral out of control.

Maximize asset reliability

For businesses that maintain vehicle fleets, testing and analysis ensure that equipment is up, running and making money instead of laid up in the shop.

Increased resale value

Performing oil analysis provides valuable sampling history documentation that can justify higher equipment resale values.

How to perform oil analysis

To demonstrate how easy it is to perform oil analysis, I obtained an oil analysis kit from Oil Analyzers INC. and identified the perfect subject from my family fleet – my trusty 1998 Toyota Corolla. I thumped down exactly $2,995 for the car more than three years ago, and it’s been bulletproof ever since. In fact, it was used in this demonstration of how to test engine compression. Check it out to see how it performed.

Here’s what you’ll need to perform oil analysis on your vehicle

1) Warm up the engine

Warm oil flows more easily through the sampling pump. In addition, circulating the oil prior to drawing a sample ensures consistency. Just run the vehicle for a couple minutes; there’s no need to bring it up to operating temperature.

2) Draw the oil sample

Using a vacuum pump is the easiest and cleanest way to accomplish this. It allows access to the oil sump through the dipstick tube. Thread a clean sample bottle to the pump. Attach a length of clean hose to the top of the pump and tighten the lock ring.

PRO TIP: To know how much sampling hose to use, measure the dipstick and add a foot.

Insert the opposite end of the tube into the dipstick tube. It helps to cut it at a 45-degree angle to avoid snagging on bends or restrictions.

Once it bottoms out in the oil sump, retract the tube about an inch so it’s not pulling contaminants off the bottom of the oil pan. Pump the plunger until the bottle is 3/4 full.

Sometimes it’s impossible to draw a lubricant sample through the dipstick tube. In these cases, you can pull the sample straight from the reservoir, although it’s messier. If this is the case, allow the lubricant to drain for a couple seconds before catching a sample in the bottle so contaminants that have settled around the drain plug are flushed out. Quickly reinstall the drain plug and top-off the reservoir.

3) Ship the oil sample

Most oil analysis kits come with the appropriate labels and directions for shipping it to a lab. Follow the instructions, then hang tight until the results arrive.

4) Read the results

I can’t speak for all oil analysis labs, but Oil Analyzers INC. typically returns results in about two days after receiving the sample. I received a PDF in my inbox the day after the lab had received the oil sample.

Shop Oil Analysis Kits

The lab sends a report that includes application information, elemental analysis and recommendations. The amount of information varies depending on the kit you use.

Let’s take a look at the report for my ’98 Corolla.

oil analysis sheet

It’s important to note that I put 10,915 miles on the oil over the course of 11 months. First, notice the severity status level in the upper right. It provides a quick reference to determine the status of the sample.

  • Severity 0 (Normal) = Oil is suitable for continued use.
  • Severity 1 (Normal) = Oil is suitable for continued use. Observe for trends in future tests.
  • Severity 2 (Abnormal) = Oil is suitable for continued use. Resample at half the normal interval.
  • Severity 3 (Abnormal) = Replace oil filter and top-off system with fresh oil. Resample at half the normal interval or change oil.
  • Severity 4 (Critical) = Change oil and filter if not done when sample was taken.

My sample fell into the Severity 2 category. Why?

Notice the Multi-Source Metals and Additive Metals highlighted in yellow.

The information in the Comments section explains why: “Flagged additive levels are lower than expected for the identified lubricant. This may have been topped off with a different lubricant, the fluid may be misidentified, or a different lubricant or formulation may have been in use prior to a recent change.”

Nailed it.

I’m guilty of having topped-off the engine with a different AMSOIL product than the Signature Series 0W-30 Synthetic Motor Oil initially used for the oil change 11 months earlier. This report shows why you shouldn’t mix lubricants, if possible. Sure, it won’t do lasting harm to the engine, but mixing lubricants disrupts the oil’s chemistry and can shorten its service life and reduce performance.

Learn from my negligence, friends – don’t mix engine oils.

Reading an oil analysis report

You can also see fuel dilution is moderately high while TBN is moderately low. As Allen Bender, Oil Analyzers INC. Manager told me, the TBN is no cause for concern and there is “considerable time” before the oil would have to be changed.

All in all, this is a good report for a 21-year-old engine with more than 150,000 miles, most of it using who-knows-what motor oil.

Wear metals are low, meaning the oil is doing a great job protecting the bearings and other components from wear. Contaminants are also low, meaning the air filter is capturing silicon and other debris before it reaches the engine. The report shows no glycol contamination, which means the engine coolant is where it’s supposed to be – in the cooling system – and not in the oil via a leaking head gasket or other issue. And oil viscosity and oxidation are both good, showing that the oil is holding up fine, even after 11 months.

The one area that provides a little concern is 3-percent fuel dilution. As noted, this is a moderate level and shouldn’t cause alarm, but it is something to watch.

This is a perfect example of the power of oil analysis. It allows me to monitor the fuel-dilution level and potentially take action if it increases to a problematic level. Knowing the engine suffers moderate fuel dilution also reinforces the importance of using a high-quality synthetic oil (and not mixing oils!) to ensure maximum protection.

Give oil analysis a try. It’s relatively cheap for the information it provides and it empowers you to take better care of your vehicles while maximizing their return on your investment.

Shop Oil Analysis Kits

We have all the main oil analysis kits here in the Sioux Falls store. 47073 98th st. Just behind Marlins found at Exit 73 on I-29.

605-274-2580