Skip to main content

Understanding Lubrication Fundamentals

Basic Fluid Lubrication and Protection Fundamentals

Different methods of lubrication protect machines from wear.

Lubrication of worm gear

Gear oil on gear example

_by David Hilgendorf

The primary function of fluid lubrication is to provide a durable film that protects moving parts by reducing friction and wear between surfaces; however, the level of protection provided is enabled by different methods of lubrication:

The reduction of friction by using a fluid can be divided into two basic types: full-film and thin-film. Full-film lubrication consists of four sub-types and thin-film lubrication consists of two sub-types.

Full-film lubrication

  • Hydrodynamic
  • Elastohydrodynamic
  • Hydrostatic-film
  • Squeeze-film

Thin-film lubrication

  • Boundary
  • Mixed-film

We’ll discuss the differences in that order:

Hydrodynamic lubrication

Hydrodynamic, or full-film, lubrication exists when two surfaces are completely separated by an unbroken lubricant film so there is no metal-to-metal contact. The movement of the rolling or sliding action causes the film to become thicker and pressurized, which prevents the surfaces from touching.

When the two surfaces are moving in opposite directions, the fluid immediately next to each surface will travel at the same speed and direction as the surface. If two parts are moving in the same direction, a full hydrodynamic film can be formed by wedging a lubricant between the moving parts. Known as wedging film action, this principle allows large loads to be supported by the fluid. It works much like a car tire hydroplaning on a wet road surface. During reciprocating motion, where the speeds of the relative surfaces eventually reach zero as the direction changes, the wedging of the lubricant is necessary to maintain hydrodynamic lubrication.

The lubricant’s viscosity assumes responsibility for most of the wear protection and additives play a limited role. Although full-film lubrication prevents metal-to-metal contact, abrasive wear or scratching can still occur if dirt particles penetrate the lubricating film. Additional factors, such as load increases, can prevent hydrodynamic lubrication by decreasing the oil film thickness, allowing metal-to-metal contact to occur.

Engine components operating with full-film lubrication include the crankshaft, camshaft and connecting rod bearings, and piston pin bushings. Under normal loads, transmission and rear-axle bearings also operate under hydrodynamic lubrication.

Hydrodynamic lubrication diagram graphic

Hydrodynamic lubrication diagram graphic

Elastohydrodynamic lubrication

Elastohydrodynamic (EHD) lubrication is another form of full-film lubrication that exists when the lubricant reacts to pressure or load and resists compression, functioning as if it were harder than the metal surface it supports. As viscosity increases under pressure, the film becomes more rigid, creating a temporary elastic deformation of the surfaces. EHD occurs in the area where the most pressure or load affects the component. In roller bearings, for example, the metal surface deforms from the extreme pressure of the lubricant

The lubricant’s viscosity and additives work together to protect surfaces in an EHD system. Anti-wear additives are often used to protect engine bearings in high-load conditions, while both anti-wear and extreme-pressure additives work to protect gears in high-load conditions.

Hydrostatic-film lubrication

Hydrostatic-film lubrication is a full-film lubrication method common in heavily loaded applications that require a supply of high-pressure oil film. The high pressure in hydrostatic-film lubrication ensures that the required film thickness will be maintained to support a heavy load during extreme operation. Hydrostatic-film lubrication maintains a fluid film under high-load and low-speed conditions, such as those experienced at equipment startup.

Squeeze-film lubrication

Squeeze-film lubrication is a form of full-film lubrication that results from pressure that causes the top load plate to move toward the bottom load plate. As these surfaces move closer together, the oil moves away from the heavily loaded area.

As load is applied, the viscosity of the lubricant increases, enabling the oil to resist the pressure to flow out from between the plates. Eventually, the lubricant will move to either side, resulting in metal-to-metal contact. A piston pin bushing is a good example of squeeze-film lubrication.

Boundary lubrication

Boundary lubrication is a form of thin-film lubrication and occurs when a lubricant’s film becomes too thin and contact between the surface’s asperities occurs. Excessive loading, high speeds or a change in the fluid’s characteristics can result in boundary lubrication.

No surface is truly smooth, even when polished to a mirror finish. The irregularities, or asperities, on every surface may be so small that they are only visible under a microscope. When two highly polished surfaces meet, only some of these asperities on the surfaces touch, but when force is applied at right angles to the surfaces (called a normal load), the number of contact points increases.

Boundary lubrication often occurs during the start-up and shutdown of equipment. In these cases, chemical compounds enhance the properties of the lubricating fluid to reduce friction and provide wear protection. For instance, anti-wear additives protect the cam lobes, cylinder walls and piston rings in engine high-load conditions, while anti-wear and extreme-pressure additives protect ring and pinion gears in rear axles.

Other lubrication

Mixed-film lubrication is considered a form of thin-film lubrication, although it is a combination of hydrodynamic and boundary lubrication. In mixed-film lubrication, only occasional asperity contact occurs.

Solid-film lubrication is used in applications that are difficult to lubricate with oils and greases. To manage these difficult applications, solid- or dry-film lubrication is applied where the solid or dry material attaches to the surface to reduce roughness. Solid-film lubricants fill the valleys and peaks of a rough surface to prevent metal-to-metal contact. Common solid-film lubricants include graphite, molybdenum disulfide (MoS2, aka moly) and polytetrafluoroethylene (PTFE), also known as Teflon.*

 

AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear. AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear.

AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear.

video
play-sharp-fill

Texas Heat Proof AMSOIL Gives Transmissions a Break

AMSOIL Synthetic Transmission Fluid Tames Texas Heat

Not even a “spot” of sludge in the pan or on the filter despite extreme heat & heavy towing.

BTB Services owner Bryan Bayles and employee Oscar DeLeon stand by the company’s 2015 Chevy 2500, which is still running strong thanks to good maintenance and AMSOIL products.

by John Baker | December 2022

Customer Bryan Bayles, out of Katy, Texas, saw a need while working as a groundwater sampler and turned it into a successful business. “We used to go to these sites that were really hard to get to because they weren’t being maintained,” he said.

Neglect and disuse often turned groundwater sampling sites into jungles of overgrown weeds and brush, sometimes teeming with rats. Today, Bayles’ company, BTB Services, does what’s called “post-closure care.” His crew maintains groundwater-testing sites around refineries and other sites so they remain accessible.

“One site was 25 acres and in the middle of a town,” said Bayles. “People started complaining about rats running out of it.”

Much of the work involves using tractors, zero-turn mowers and handheld equipment to cut large areas of grass and brush.

“We take tractors out and weed eaters to get the paths clear so we can get out there,” Bayles said.

BTB Services operates three large mowing tractors, two zero-turn mowers, a skid steer and a brush mower. Being a stickler for maintenance, Bayles uses AMSOIL products in his vehicles and equipment.

Vehicles Must Face Brutal Texas Heat

His vehicles include a small fleet of half-ton and larger pickups that transport equipment to sites using gooseneck trailers. Working in the scorching Texas heat means BTB Services’ trucks are exposed to temperatures that frequently exceed 100°F (38°C) for a good part of the season. Combined with towing up to 30,000 pounds (13,607 kg), the company’s vehicles are the epitome of “severe-service” work trucks.

One such truck is a 2015 Chevrolet 2500 that Bayles bought in 2015. Bayles does as much maintenance as he can himself, including changing transmission fluid and filters. When the truck had about 50,000 miles (80,000 km) on it, Bayles switched the transmission to AMSOIL Signature Series Synthetic Fuel-Efficient Automatic Transmission Fluid.

 

Internal Transmission Filter Never Changed

Given the severe conditions, Bayles changes transmission fluid every 30,000 miles (48,000 km).

“I know that’s extreme, but we’re pulling about 30,000 pounds of weight behind the trucks,” he said. The maintenance strategy plus AMSOIL product performance have helped the truck eclipse 300,000 miles (483,000 km) with no issues.

Bayles changes the external, spin-on transmission filter on the Chevy 2500 every 60,000 miles (96,500 km).

However, since the transmission includes a drain plug and doesn’t require dropping the pan, he didn’t realize the transmission also has an internal filter, meaning it was never changed.

“I felt horrible that I had 300,000 miles on the truck and I never had the pan off,” said Bayles.

“Spotless! I can’t believe it.”

So, after 257,000 miles (413,600 km) using AMSOIL synthetic transmission fluid, Bayles dropped the pan to change the internal filter, unsure what he would find. The cleanliness of the pan and fluid amazed him; there wasn’t even a hint of sludge or deposits. He texted his AMSOIL Dealer, Erroll Ivery, an image of the clean pan and pristine fluid with the words, “Spotless! I can’t believe it.”

Transmission fluid still clean after Texas Heat and abuse of maximum towing.

The transmission pan and filter contained no sludge or deposits; the fluid still appeared in like-new condition.

Bayles said there wasn’t even a film of deposits or sludge on the transmission filter.

The Chevy 2500 has about 315,000 miles (507,000 km) on it now and still runs great. “Right now, I have it pulling a 32 foot trailer,” said Bayles. Including the payload, that adds up to about 22,500 pounds (10,200 kg). “I gave it a little bit of a break,” he said.

AMSOIL Synthetic Motor Oil Also Delivers Premium Protection

BTB Services has four trucks, two diesel and two gas, all of which use AMSOIL products in the engine, transmission, differentials and cooling systems. All the company’s diesel tractors use AMSOIL products, too. “We started using AMSOIL in our zero-turn this year,” he said.

Bayles performed oil analysis on the engine oil in his trucks, and the results showed the oil in his gas trucks still had 20% oil life following 20,000 severe-service miles (32,000 km), while the diesel oil still had 50% oil life after 10,000 miles (16,000 km).

AMSOIL products help Brian Bayles keep his trucks and equipment up and running, making money, which is vital for any business. “It definitely has helped keep the equipment well-maintained. I have never had any problems with the vehicles I maintain,” he said.

Bayles isn’t shy about telling others about his AMSOIL success story. “It’s a product I definitely highly recommend,” he said. “I believe in putting the best in all my equipment.”