Skip to main content
Product Catalog

Download the Latest Full Color AMSOIL Catalog

Vehicle Look-Up Guides

Match AMSOIL to your Equipment

Wholesale Buying Options

Local or Out of State - The Choice Is Yours!

Racing Oil vs. Regular Oil: What’s the Difference?

Scott Douglas AMSOIL racing truck

Why not use Racing Oil in my Car If It’s Tougher?

When deciding if racing oil is right for their vehicles, gearheads and other enthusiasts sometimes offer this line of reasoning:

  1. Racing engines are more severe than my engine
  2. Racing engines use racing oil
  3. Therefore, I should use racing oil in my vehicle for best protection

It’s true that your average racing engine creates operating conditions more severe than the average passenger car engine.

However, that’s not to say that modern engines aren’t tough on oil.

The turbocharged, direct-injection engines in modern vehicles generate increased heat and contaminants compared to their predecessors. Motor oil bears the brunt of the added stress.

That’s why industry motor-oil specifications keep growing tougher and automakers are increasingly recommending synthetic oils to meet these strict performance specs.

Scott Douglas AMSOIL racing truck

Scott Douglas AMSOIL race truck

Should I use racing oil in my car?

Racing, however, is a whole different animal.

The powerful, modified engines in racing vehicles produce extreme heat and pressures your average car or truck simply will never see.

A 900-hp Pro 4×4 race truck can produce engine temperatures in excess of 300ºF (149ºC). Engine temperatures in a typical passenger car/light truck fall somewhere between 195ºF and 220ºF (90ºC – 104ºC).

The difference is even more striking when you consider that the rate of motor oil oxidation (chemical breakdown) doubles for every 18ºF (10ºC) increase in oil temperature.

The tremendous shearing forces the oil bears as it’s squeezed between the interfaces of the pistons/rings and cam lobes/lifters pose another problem. The pressure can tear apart the molecular structure of the oil, reducing its viscosity and film strength.

Racing oil has to be formulated differently to protect these demanding engines. Even so, it doesn’t mean you should order a case of AMSOIL DOMINATOR®  10w-30 Synthetic Racing Oil for your car.

DOMINATOR® 15W-50 Racing Oil

Racing oil is changed more often

So, why not use racing oil in your daily driver? For starters, racing oils are changed frequently.

Most professionals change oil every couple races, if not more frequently. For that reason, racing oils are formulated with a lower total base number (TBN) than passenger car motor oils.

TBN is a measure of the oil’s detergency properties and its ability to neutralize acidic byproducts. Oils with longer drain intervals have higher TBNs.

AMSOIL Signature Series Synthetic Motor Oil features a TBN of 12.5 to enable its 25,000-mile/one-year drain interval.

In contrast, DOMINATOR Synthetic Racing Oil has a TBN of 8 since we recommend changing it more often. As great as it performs on the track, DOMINATOR is not what you want in your engine when you’re driving thousands of miles and several months between oil changes.

Regular motor oil is designed to provide additional benefits

You also want to use an oil in your daily driver that excels in several performance areas:

Motor oil additives produce many of these benefits. For example, anti-oxidant additives fight increased heat and extend oil service life.

Anti-wear additives interact with the metal surfaces of engine parts and guard against metal-to-metal contact.

Many additives form layers on metal surfaces. That being the case, they compete with each other for space, so to speak, like pigs competing for room at the trough.

Racing oils are often formulated with a heavy dose of friction modifiers to add lubricity for maximum horsepower and torque.

The boosted level of additives meant to increase protection and performance during a race doesn’t leave room in the formulation for additives found in passenger car motor oils that help maximize fuel economy, fight corrosion or improve cold-weather protection.

In effect, the ravenous pigs at the trough leave no room for their brethren, resulting in a less well-rounded formulation.

Bottom line: use regular motor oil in your daily driver

Achieving the tasks of a passenger car motor oil requires a finely balanced formulation. Too much or too little performance in one area can negatively affect other areas – and the oil’s overall protection and performance. The list of tasks required of a racing oil, however, is much shorter.

The right tool for the right job is an axiom with which you’re familiar. The same holds for motor oil. It’s best to leave racing oil to competition engines and use a properly formulated passenger car motor oil for your daily vehicle.

DEEP CLEAN: P.I. GASOLINE ADDITIVE – More Miles Instantly

Gasoline Additive injector cleaner

Deep Clean:

P.I. PERFORMANCE IMPROVER GASOLINE ADDITIVE

P.i. Performance Improver Gasoline Additive (API) now features a new label, formula and capless- compatible bottle. The popular deep-cleaning gasoline additive continues to restore your engine’s power and performance and increase fuel economy.

Maximum Fuel Economy

AMSOIL P.i. (Performance Improver)  is a potent gasoline performance improver featuring concentrated detergents that aggressively clean stubborn, power-robbing deposits from injectors, valves and combustion chambers. It reduces emissions and increases fuel economy up to 5.7 percent. P.i. cleans your entire fuel system in one tank of gasoline and restores engine power and performance.

It’s also our best selling non-motor oil product here in the Sioux Falls (Exit 73) store. Also find it at Stan Houston’s

AMSOIL did their research and worked with the additive suppliers to create this product – thus don’t waste your time with other on the shelf “injector cleaner(s)”. If you have that’s great too as you will have something to compare results.

Deposit Clean-up

GDI injectors are located inside the intense heat and pressure environment of the combustion chamber, making them particularly vulnerable to deposits. Even small amounts of deposits can lead to decreased power and fuel economy. P.i. features improved cleaning power to remove stubborn deposits and keep GDI injectors functioning as they should.

Going Capless

Many new vehicles have replaced traditional fuel caps with capless systems. While adding some convenience at the gas pump, the feature can make using fuel additive bottles a challenge. The threads on most bottles are easily hung up and make treating fuel and removing the bottle difficult. The new P.i. bottle is fully compatible with capless fuel systems.

Formulation Change? Yes. The basic P.i. formula and benefits are the same, but we’ve added to them with new chemistry to better target deposits in direct-injection engines.

New Stock Number? No

New Treat Rate? Yes. Treats up to 30 gallons. Add entire bottle to tank at fill-up.

Pricing Change? No

  • Restores power and performance
  • Reduces need for costly higher-octane fuel
  • Reduces noise from carbon rap and pre-ignition
  • Controls pre-ignition “knock”
  • Maintains the engine efficiency, fuel economy and power of new vehicles
  • Capless compatible

Knocking Out Pre-Ignition

Most cars have “knock” sensors that adjust spark timing to prevent knock. Although audible knock is controlled, power is lost from retarded timing. Higher octane fuels can be used to help prevent knock, an effect called “octane requirement increase.” As a vehicle ages, more-expensive, higher-octane fuel is needed to keep it operating at peak performance. By cleaning combustion chamber deposits, knock is controlled, power is restored and costly higher octane fuel is no longer necessary.

Announcement – Banks Performance/AMSOIL Partnership

Bank's protected by AMSOIL

Known for Being The Pinnacle of Performance, AMSOIL and Banks Make for Logical Partnership

Much more to be published on this in the future of course – here’s just a little about the two firms.

Endorsement To Better Serve Customer Base

Banks Power has recently endorsed AMSOIL as the lubricant of choice. As the premier design and manufacturer of power enhancing products for diesel and gas powered vehicles, Banks Power is well-known and respected in the diesel enthusiast community. Similar to AMSOIL, the company’s fundamental principles combine old fashioned business ethics and service with leading technology. Customers expect elegantly engineered products, superior construction, scientifically proven performance and competitive prices.

amsoil and banks performance partmership

Technological Achievements

Banks company history is studded with technological achievements. Including Gale’s pioneering work in turbocharging marine engines in 1969; the premiere of twin-turbo small block Chevy engines in 1978; the invention and patent of the Banks OttoMind electronic fuel management module in 1997; transmission control systems; and the recent invention and patent of the iDash DataMonster, the only instrument to calculate, log and display an exclusive suite of engine parameters, including manifold air density.

Engineering

First and foremost, Banks is an engineering firm. Established in 1958 Banks has grown to 100+ employees on a 12 acre campus. The mechanical engineering department is staffed with world class automotive experts who design and test the latest high performance equipment. In the Race Shop, special project vehicles feature cutting edge diesel and gasoline development, multiple turbo applications, mind-boggling horsepower and head turning style. Sophisticated electronic engineering technologies are applied to engine improvement in the rapidly growing Computer Systems Engineering Department. Gale Banks Engineering Designs turbocharged engines from the centerline of the crankshaft out.

Amsoil as included differential oil with banks products

“Banks Protected by AMSOIL”

Banks Protected by AMSOIL endorsement will appear on all digital media reaching millions of enthusiasts who have yet to experience the AMSOIL difference.

Creating further valuable exposure, Banks is offering its new differential cover bundled with four Easy Packs of the AMSOIL Severe Gear as the first fill lubricant coupled with a flyer with information on how to buy or find AMSOIL products.

Figuring out Engine Knock

top dead center valve timing

Why Does My Engine Knock? 3 Possible Explanations.

There are a few different reasons your engine might make a knocking, ticking or pinging sound. Let’s break each down and talk about what might be happening.

Is it an engine knocking sound, tick or ping?

One driver’s knock is another driver’s tick. Or ping. Still others compare the engine knocking sound they hear to marbles rolling around inside a coffee can.

The spontaneous ignition of air/fuel inside the cylinders is a common source of engine knock.

While the description of the sound may differ, the circumstances under which it occurs are often the same – low-speed, high-torque conditions common when you’re accelerating.

Engine knock typically occurs during low-speed, high-torque conditions, like when you’re accelerating.

How engine knock occurs

Say the clock has struck 5:00 and you make a bee-line to your truck and take off for home. When you mash the accelerator out of the parking lot, that’s when you hear an engine knocking sound. Or ping. When you let off the gas, it goes away.

This is likely due to either pre-ignition or detonation. They’re effectively the same phenomenon, but they occur at different times.

In a properly running engine, spark-triggered ignition typically occurs a few degrees before the piston reaches top dead center (TDC). This careful timing ensures the downward force of the exploding fuel/air mixture works in tandem with downward piston momentum, resulting in optimum efficiency and power.

That’s bad timing

Pre-ignition (and its cousin, low-speed pre-ignition [LSPI]) are abnormal combustion events that throw off this precise balance. Under certain conditions, the fuel/air can spontaneously ignite too early in the combustion cycle. Sometimes low-octane fuel is to blame; sometimes it’s deposits on the piston crown.

Fuel with too low an octane rating for your engine can sporadically ignite prior to the piston reaching TDC.

Or, chunks of carbon can heat up and create a hot spot that effectively ignites the fuel/air before the plug fires. Then, when the plug does fire a fraction of a second later, the two flame fronts collide. In certain conditions, they can clash with the upward-moving piston. The resulting shock wave rattles the piston inside the cylinder, creating the knock, ping or can-of-marbles sound you hear.

Detonation has the same effect, except it occurs after the plug fires.

Computers in modern vehicles can detect engine knock and compensate by adjusting engine timing. Though it saves your engine from destroying itself, performance and fuel economy can suffer.

Tick, tick, tick

Say your engine is ticking like a time bomb, especially in the morning when it’s cold. You likely have a valve-train issue.

Your engine uses intake valves to feed clean air into the cylinders and exhaust valves to kick spent combustion gases out. The valves open and close thousands of time per minute in a choreographed whirlwind of activity.

top dead center valve timing

A finely balanced system of parts – rocker arms, valve stems, cam lobes, lifters – control their movements. The clearances between these parts, known as lash, can become loose (or sloppy, in automobile nomenclature). When that happens, all those moving parts clattering against each other can create a ticking sound.

It’s especially noticeable in the morning before the oil has had a chance to circulate throughout the upper end of the engine.

Many engines use hydraulic lifters, which use an oil-pressure-assisted plunger and spring to compensate for lash, helping ensure the system runs smoothly and quietly.

Proper oil pressure plays a big role in valve-train operation and noise. Low oil pressure can reduce the effectiveness of hydraulic lifters, increasing lash. This is most likely to occur with a low-quality conventional oil that thins at high temperatures, preventing the engine from developing good oil pressure.

If the rods are knockin’…

Rod knock is yet another possible explanation for your engine knocking sound.

Your engine is built with a designed clearance between the crankshaft journals and the connecting rods. In a properly running engine using a good oil, the motor oil fills those clearances and prevents metal-to-metal contact.

But, let’s say you’ve been using a poor-quality conventional oil.

At high temperatures, the oil thins and the fluid film weakens. The pressure between the crank journals and connecting rods squeezes the oil from the clearances. Now, metal is riding on metal, wearing the surfaces and widening the clearances. Eventually the clearances widen so much that you begin to hear the metal surfaces clattering against each other. Eventually, they’ll weld together and destroy the engine.

Quieting a noisy engine

This all sounds dire. But you can sometimes address pre-ignition by using a higher octane gas or by cleaning deposits from your engine with a fuel-system cleaner like AMSOIL P.i. Performance Improver.

Buy AMSOIL P.i.

Using a higher-quality oil that flows better in cold weather and maintains its viscosity when hot can sometimes quiet a valve-train tick.

Shop AMSOIL Synthetic Motor Oil

Rod knock is the worst of the three. Once the clearances between the crank journals and connecting rods have widened due to wear, it’s just a matter of time before catastrophic damage.

In any case, visit your mechanic and take care of the problem before it gets worse.

The bottom line…

The moral of the story is simply to pay a little more now to maintain your vehicle rather than spend a lot later to fix it.

Use a high-quality oil that stands up to extreme heat and maintains correct oil pressure. Periodically clean combustion chamber deposits with a fuel additive, such as AMSOIL P.i.

Doing so can help keep your vehicle running properly and quietly for years.

All You Need To Know About Motor Oil Cold Flow

All You Need To Know About Motor Oil Cold Flow

Winter (Cold) flow wear factors in your engine

Engineers agree that most engine wear occurs during cold starts. While the exact percentage depends on several factors and is difficult to define, the reasons include the following…

  • A richer air/fuel mixture at startup washes oil from the cylinder walls
  • Condensation forms inside the engine that causes rust and corrosion
  • Cold piston rings and cylinders don’t seal as well, causing combustion gases to “blow by” the rings and contaminate the oil
  • Gravity causes much of the oil to fall back into the oil sump, leaving components unprotected
  • Cold oil doesn’t flow immediately at startup, temporarily starving the engine of oil

While all these factors are important, lack of oil due to poor cold-flow properties is the biggest culprit. Fortunately, there’s something you can do about it.

“Cold” isn’t just for winter

First, it’s important to define a “cold” start. While true that oil thickens more in sub-zero winter weather and causes increased starting difficulty, an engine is considered “cold” after it’s sat long enough to cool to ambient temperature, typically overnight. Even in warm climates, cold-start wear is a problem.

The oil inside your engine cools as it sits overnight. As it cools, its viscosity increases (it thickens). When it’s time to start your vehicle in the morning, the thicker oil doesn’t flow through the engine as readily as it does when it’s at operating temperature. It’s during this time that vital engine parts can operate without lubrication, increasing wear.

The problem is more pronounced the colder it gets, particularly if you’re using conventional motor oil.

Waxes solidify in the cold

Conventional lubricants contain paraffins, or waxes, that solidify when the temperature drops. These waxes cause the oil to thicken. In the comparison shown here, we cooled a conventional oil and AMSOIL Signature Series 5W 30 Synthetic Motor Oil (ASL) to -40ºF. The conventional oil on the left thickened so much it barely flowed from the beaker. If that oil were inside your engine on a cold morning, it could prevent the crankshaft from spinning fast enough to start the engine, leaving you stranded. Even if the engine started, you wouldn’t be out of the woods. Thick, cold oil can fail to flow through the tiny screen openings on the oil pickup tube (see facing page), starving the engine of oil for several vital moments before the oil begins to heat up and flow throughout the engine.

In addition, thick oil can fail to flow through the tiny passages in the crankshaft to lubricate the main bearings. Similar oil passages in the camshaft ensure the engine’s upper end is lubricated (see facing page). The further away from the oil pump these oil passages reside, the longer it takes the oil to reach components at startup, placing your engine at increased risk of wear.

Poor lubricant cold-flow properties can also affect variable valve timing (VVT) systems. Engines equipped with VVT have solenoids with tiny openings through which the oil flows and acts as a hydraulic fluid to actuate VVT components. The solenoid pictured to the right, from a Ford* 3.5L EcoBoost* engine, contains openings .007 inches across – about the thickness of two sheets of paper. Oil that fails to flow through these tiny passages reduces VVT performance and can trigger a check-engine light.

Here’s how to protect your engine

AMSOIL synthetic motor oils provide better cold-flow properties than conventional oils. Our synthetic base oils don’t contain the waxes inherent to conventional oils. As a result, they demonstrate reduced pour points and provide increased fluidity during cold starts. This translates into oil that flows almost immediately through the oil pickup screen and other tiny oil passages when you start your engine, protecting it against wear.

Look at the oil’s pour point to gauge its ability to flow quickly at startup, typically reported on the oil’s data bulletin. Pour point is the coldest point at which an oil will flow. Lower values equal improved cold-flow and maximum wear protection. AMSOIL Signature Series 5W-30 Synthetic Motor Oil, for example, provides a pour point of -50ºF (-58ºC).

Pique prospects’ curiosity

This type of information can help you create curiosity about AMSOIL products and lead someone from not looking for lubricants to looking for AMSOIL products. Ask pointed questions or provide useful information, such as…

  • Most engine wear occurs during cold starts. Do you take steps to guard against start-up wear?
  • Even in warm climates an engine is considered “cold” after it’s sat overnight.
  • Do you ever have trouble starting your truck on cold mornings?

Once they’ve shown interest, offer more technical explanation if required and offer AMSOIL synthetic motor oil as a solution to difficult cold starts and accelerated cold-start wear.

A little known fact

The differences in brands comparing a 5W-30 to the protection of a 10W-30 or 0W-30 can even be critical to the prevention of wear in the 50 to 65 degree F range. So just because you may live in a southern climate doesn’t mean you are in the green with a older specification viscosity.. A more advanced oil brand allows you to take advantage of the tech of the latest (lowest allowable) start-up viscosity year round.