Skip to main content

The Difference Between GL-4 and GL-5 Gear Oil

The Difference Between GL-4 and GL-5 Gear Oil

The main difference between GL-4 and GL-5 gear oils is in the level of extreme-pressure (EP) additives.

It’s really very simple. They are not interchangeable and GL5 didn’t replace GL4.

by Eddie Yorkman, | July 5, 2022

If you’ve ever purchased gear oil, or spent any time looking at gear-oil specifications, you have undoubtedly come across the API GL-4 and GL-5 specifications. You may have wondered, what is the difference between GL-4 and GL-5 gear oil? Where can I buy GL-4 and GL-5 gear oil?

Well that’s if you were even able to find any in the modern auto parts stores.

Severity – Hypoid gears vs Helical

The American Petroleum Institute (API) classifies gears using GL ratings, ranging from GL-1 to GL-5. Higher GL rating numbers represent more severe applications; GL-1 is the least severe and can usually be satisfied with a motor oil, while GL-5 is the most severe GL rating.

EP additives

The main difference between GL-4 and GL-5 gear oils is in the level of extreme-pressure (EP) additives. EP additives effectively protect gears by providing a sacrificial layer on gear surfaces; these additives are essential for protecting gears operating under heavy loads and extreme temperatures. A typical GL-5 gear oil provides about twice as much EP additive in its formulation compared to a GL-4 gear oil.

Where are GL-4 and GL-5 gear oils used?

GL-4 gear oils are typically recommended for spur and helical gears found in manual transmissions and transaxles operating under moderate speeds and loads.

GL-5 gear oils are typically recommended for hypoid gears in automotive axles operating under high-speed, high-load conditions.

What type/weight gear oil should I use?

For top protection and performance, it is best to consult your owner’s manual/Shop manual for the manufacturer’s recommendation. There, you will find both the specified viscosity (75W-90, 75W-140, etc.) and specification (API GL-4, API GL-5, API MT-1, etc.) recommended for your application. Almost all hypoid gear sets require GL-5 due to the need for significant extreme-pressure protection.

Note the 2nd number is the KEY weight under operating temperatures and conditions. 990, 110, 140, 250, etc..  For example our 75W-80 covers and overlaps the recommendations where 80W-90, 85W-90 are written.

What’s the best gear oil for my vehicle?

AMSOIL SEVERE GEAR® Synthetic Gear Lube excels in protecting gears and bearings from the rigors of severe-service operation. By design, it resists breakdown from high heat, preventing acids and maintaining a barrier to prevent metal-to-metal contact while conditioning seals. Its wax-free construction also improves cold-flow properties, improving fuel economy and cold-weather performance.

Now 75W-85 is available January 2025

• Superior film strength
• Controls thermal runaway
• Protects against rust and corrosion
• Helps reduce operating temperatures
• Maximum efficiency
• Long oil, seal and equipment life
• Flexible easy-pack for clean, fast installation

SEVERE GEAR is recommended in differentials, manual transmissions and other gear applications requiring an API GL-5 gear oil. It can also be used in axles where an API GL-4 lubricant is recommended.

video
play-sharp-fill

Understanding Lubrication Fundamentals

Basic Fluid Lubrication and Protection Fundamentals

Different methods of lubrication protect machines from wear.

Lubrication of worm gear

Gear oil on gear example

_by David Hilgendorf

The primary function of fluid lubrication is to provide a durable film that protects moving parts by reducing friction and wear between surfaces; however, the level of protection provided is enabled by different methods of lubrication:

The reduction of friction by using a fluid can be divided into two basic types: full-film and thin-film. Full-film lubrication consists of four sub-types and thin-film lubrication consists of two sub-types.

Full-film lubrication

  • Hydrodynamic
  • Elastohydrodynamic
  • Hydrostatic-film
  • Squeeze-film

Thin-film lubrication

  • Boundary
  • Mixed-film

We’ll discuss the differences in that order:

Hydrodynamic lubrication

Hydrodynamic, or full-film, lubrication exists when two surfaces are completely separated by an unbroken lubricant film so there is no metal-to-metal contact. The movement of the rolling or sliding action causes the film to become thicker and pressurized, which prevents the surfaces from touching.

When the two surfaces are moving in opposite directions, the fluid immediately next to each surface will travel at the same speed and direction as the surface. If two parts are moving in the same direction, a full hydrodynamic film can be formed by wedging a lubricant between the moving parts. Known as wedging film action, this principle allows large loads to be supported by the fluid. It works much like a car tire hydroplaning on a wet road surface. During reciprocating motion, where the speeds of the relative surfaces eventually reach zero as the direction changes, the wedging of the lubricant is necessary to maintain hydrodynamic lubrication.

The lubricant’s viscosity assumes responsibility for most of the wear protection and additives play a limited role. Although full-film lubrication prevents metal-to-metal contact, abrasive wear or scratching can still occur if dirt particles penetrate the lubricating film. Additional factors, such as load increases, can prevent hydrodynamic lubrication by decreasing the oil film thickness, allowing metal-to-metal contact to occur.

Engine components operating with full-film lubrication include the crankshaft, camshaft and connecting rod bearings, and piston pin bushings. Under normal loads, transmission and rear-axle bearings also operate under hydrodynamic lubrication.

Hydrodynamic lubrication diagram graphic

Hydrodynamic lubrication diagram graphic

Elastohydrodynamic lubrication

Elastohydrodynamic (EHD) lubrication is another form of full-film lubrication that exists when the lubricant reacts to pressure or load and resists compression, functioning as if it were harder than the metal surface it supports. As viscosity increases under pressure, the film becomes more rigid, creating a temporary elastic deformation of the surfaces. EHD occurs in the area where the most pressure or load affects the component. In roller bearings, for example, the metal surface deforms from the extreme pressure of the lubricant

The lubricant’s viscosity and additives work together to protect surfaces in an EHD system. Anti-wear additives are often used to protect engine bearings in high-load conditions, while both anti-wear and extreme-pressure additives work to protect gears in high-load conditions.

Hydrostatic-film lubrication

Hydrostatic-film lubrication is a full-film lubrication method common in heavily loaded applications that require a supply of high-pressure oil film. The high pressure in hydrostatic-film lubrication ensures that the required film thickness will be maintained to support a heavy load during extreme operation. Hydrostatic-film lubrication maintains a fluid film under high-load and low-speed conditions, such as those experienced at equipment startup.

Squeeze-film lubrication

Squeeze-film lubrication is a form of full-film lubrication that results from pressure that causes the top load plate to move toward the bottom load plate. As these surfaces move closer together, the oil moves away from the heavily loaded area.

As load is applied, the viscosity of the lubricant increases, enabling the oil to resist the pressure to flow out from between the plates. Eventually, the lubricant will move to either side, resulting in metal-to-metal contact. A piston pin bushing is a good example of squeeze-film lubrication.

Boundary lubrication

Boundary lubrication is a form of thin-film lubrication and occurs when a lubricant’s film becomes too thin and contact between the surface’s asperities occurs. Excessive loading, high speeds or a change in the fluid’s characteristics can result in boundary lubrication.

No surface is truly smooth, even when polished to a mirror finish. The irregularities, or asperities, on every surface may be so small that they are only visible under a microscope. When two highly polished surfaces meet, only some of these asperities on the surfaces touch, but when force is applied at right angles to the surfaces (called a normal load), the number of contact points increases.

Boundary lubrication often occurs during the start-up and shutdown of equipment. In these cases, chemical compounds enhance the properties of the lubricating fluid to reduce friction and provide wear protection. For instance, anti-wear additives protect the cam lobes, cylinder walls and piston rings in engine high-load conditions, while anti-wear and extreme-pressure additives protect ring and pinion gears in rear axles.

Other lubrication

Mixed-film lubrication is considered a form of thin-film lubrication, although it is a combination of hydrodynamic and boundary lubrication. In mixed-film lubrication, only occasional asperity contact occurs.

Solid-film lubrication is used in applications that are difficult to lubricate with oils and greases. To manage these difficult applications, solid- or dry-film lubrication is applied where the solid or dry material attaches to the surface to reduce roughness. Solid-film lubricants fill the valleys and peaks of a rough surface to prevent metal-to-metal contact. Common solid-film lubricants include graphite, molybdenum disulfide (MoS2, aka moly) and polytetrafluoroethylene (PTFE), also known as Teflon.*

 

AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear. AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear.

AMSOIL synthetic lubricants are carefully formulated with the optimum blend of the highest quality base stocks and additives, ensuring lubricated components receive outstanding protection from contact wear.

video
play-sharp-fill