Skip to main content

A closer Look At Engine Sludge

Preventing Causes of Engine Oil SLUDGE

Brands matter, quality matters and frequent oil changes will not alter this. It’s all based on the additive quality and it does effect the price.

Engine sludge occurs when oxidized oil and contaminants build up on engine surfaces. It can restrict the flow of oil to the point of engine failure and costly repairs.

As the oil installed in your vehicle ages, oxygen reacts with the lubricant, resulting in a permanent chemical change. The oil picks up oxygen and becomes thicker. Just like oxygen attacks metal surfaces and causes corrosion, it negatively affects lubricants and reduces their ability to lubricate, cool and protect components. Excessive heat speeds the oxidation process. In fact, every 18°F (10°C) increase in temperature doubles the rate of oxidation.

Adding to the challenge, contaminants begin to form during normal operation. In engines, hot combustion gases can blow by the piston rings and contaminate engine oil. Glycol from engine coolant, water that forms with temperature fluctuations and fuel are other common contaminants that affect lubricants. Left unchecked, contaminants accelerate chemical reactions, which overload the lubricant and cause the formation of sludge – a gelatinous substance that wreaks havoc in engines.

Sludge can block the oil passages and oil-pump pick-up screen, resulting in oil starvation. Often, the negative effects are cumulative rather than sudden. Many engines with variable valve timing (VVT) use oil pressure-operated mechanical devices to change valve timing, duration and lift. Sludge can plug the solenoid screen or oil gallies and impact the operation of VVT mechanisms, eventually leading to a costly repair bill. Sludge reduces efficiency and increases time and money spent on maintenance.

Signature Series vs. Sludge

Signature Series Synthetic Motor Oil was subjected to the Sequence VG test to measure its ability to prevent sludge. As expected, Signature Series produced an oil pick-up tube screen virtually free from sludge (see image below). Our unique combination of detergents and high-quality base oils control oxidation and sludge to keep engines clean and efficient.

AMSOIL synthetic lubricants not only resist oxidation and sludge formation, they can help clean existing deposits in neglected engines due to superior detergency. With modern engines and equipment demanding higher-quality lubricants, it’s good to know AMSOIL synthetic lubricants are formulated to protect against sludge in the toughest operating conditions.

Sludge: a gelatinous substance that wreaks havoc in engines.

 

 

 

 

Signature Series has 50 percent more
detergents¹ to help keep oil passages clean and promote oil circulation. It provides 90% better protection against sludge².

 

 

Synthetic Warehouse note:

We own an ecoboost engine (on our Ford van) so based on our personal experience the Signature Series is the only choice in these engines. They run extremely hot effecting the process mentioned above. Test the oil you are using now at or near Ford’s maximum interval and I’m certain it’s beyond it’s life!! TBN and Oxidation levels can be at dangerous levels.  Signature Series gives you that extra benefit of the doubt because when the detergents dissipate you can start to have severe wear from corrosion and of course needless deposits from sludge AND increased oil consumption. We eliminated 75% of a resent F150 Ecoboost V6 oil consumption problem using the Engine Flush (FLSH) and the Signature Series 5W-30 (ASL).

It’s not just about keeping your car or truck longer. It’s the issues our competition causes such as carbon coating your intake valves which is an issue on modern gasoline direct injection engines.  It’s very costly to clean these as there is no-longer the gasoline we enjoyed as the cleaning agent. Fuel is shot directly into the quench area so oil vapors land on valves and build up over time.
Some newer cars do have an additional injector in the throttle body for start-up and cleaning but this will not be the common setup.

So AMSOIL Signature series will keep these areas cleaner as that’s part of what you are paying for. AMSOIL’s lowest volatility is by far worth paying for. And in some cases you pay less for our product than several of the “so called synthetics”.

Make our Sioux Falls locations your only source for lubricants! Many have made the switch for good. We’re at 47073 98th St just behind Marlins Diner. Exit 73 on I29. Or call to make sure I’m there at 605-274-2580.

 

All You Need To Know About Motor Oil Cold Flow

Winter (Cold) flow wear factors in your engine

Engineers agree that most engine wear occurs during cold starts. While the exact percentage depends on several factors and is difficult to define, the reasons include the following…

  • A richer air/fuel mixture at startup washes oil from the cylinder walls
  • Condensation forms inside the engine that causes rust and corrosion
  • Cold piston rings and cylinders don’t seal as well, causing combustion gases to “blow by” the rings and contaminate the oil
  • Gravity causes much of the oil to fall back into the oil sump, leaving components unprotected
  • Cold oil doesn’t flow immediately at startup, temporarily starving the engine of oil

While all these factors are important, lack of oil due to poor cold-flow properties is the biggest culprit. Fortunately, there’s something you can do about it.

“Cold” isn’t just for winter

First, it’s important to define a “cold” start. While true that oil thickens more in sub-zero winter weather and causes increased starting difficulty, an engine is considered “cold” after it’s sat long enough to cool to ambient temperature, typically overnight. Even in warm climates, cold-start wear is a problem.

The oil inside your engine cools as it sits overnight. As it cools, its viscosity increases (it thickens). When it’s time to start your vehicle in the morning, the thicker oil doesn’t flow through the engine as readily as it does when it’s at operating temperature. It’s during this time that vital engine parts can operate without lubrication, increasing wear.

The problem is more pronounced the colder it gets, particularly if you’re using conventional motor oil.

Waxes solidify in the cold

Conventional lubricants contain paraffins, or waxes, that solidify when the temperature drops. These waxes cause the oil to thicken. In the comparison shown here, we cooled a conventional oil and AMSOIL Signature Series 5W 30 Synthetic Motor Oil (ASL) to -40ºF. The conventional oil on the left thickened so much it barely flowed from the beaker. If that oil were inside your engine on a cold morning, it could prevent the crankshaft from spinning fast enough to start the engine, leaving you stranded. Even if the engine started, you wouldn’t be out of the woods. Thick, cold oil can fail to flow through the tiny screen openings on the oil pickup tube (see facing page), starving the engine of oil for several vital moments before the oil begins to heat up and flow throughout the engine.

In addition, thick oil can fail to flow through the tiny passages in the crankshaft to lubricate the main bearings. Similar oil passages in the camshaft ensure the engine’s upper end is lubricated (see facing page). The further away from the oil pump these oil passages reside, the longer it takes the oil to reach components at startup, placing your engine at increased risk of wear.

Poor lubricant cold-flow properties can also affect variable valve timing (VVT) systems. Engines equipped with VVT have solenoids with tiny openings through which the oil flows and acts as a hydraulic fluid to actuate VVT components. The solenoid pictured to the right, from a Ford* 3.5L EcoBoost* engine, contains openings .007 inches across – about the thickness of two sheets of paper. Oil that fails to flow through these tiny passages reduces VVT performance and can trigger a check-engine light.

Here’s how to protect your engine

AMSOIL synthetic motor oils provide better cold-flow properties than conventional oils. Our synthetic base oils don’t contain the waxes inherent to conventional oils. As a result, they demonstrate reduced pour points and provide increased fluidity during cold starts. This translates into oil that flows almost immediately through the oil pickup screen and other tiny oil passages when you start your engine, protecting it against wear.

Look at the oil’s pour point to gauge its ability to flow quickly at startup, typically reported on the oil’s data bulletin. Pour point is the coldest point at which an oil will flow. Lower values equal improved cold-flow and maximum wear protection. AMSOIL Signature Series 5W-30 Synthetic Motor Oil, for example, provides a pour point of -50ºF (-58ºC).

Pique prospects’ curiosity

This type of information can help you create curiosity about AMSOIL products and lead someone from not looking for lubricants to looking for AMSOIL products. Ask pointed questions or provide useful information, such as…

  • Most engine wear occurs during cold starts. Do you take steps to guard against start-up wear?
  • Even in warm climates an engine is considered “cold” after it’s sat overnight.
  • Do you ever have trouble starting your truck on cold mornings?

Once they’ve shown interest, offer more technical explanation if required and offer AMSOIL synthetic motor oil as a solution to difficult cold starts and accelerated cold-start wear.

A little known fact

The differences in brands comparing a 5W-30 to the protection of a 10W-30 or 0W-30 can even be critical to the prevention of wear in the 50 to 65 degree F range. So just because you may live in a southern climate doesn’t mean you are in the green with a older specification viscosity.. A more advanced oil brand allows you to take advantage of the tech of the latest (lowest allowable) start-up viscosity year round.