Skip to main content

A closer Look At Engine Sludge

Preventing Causes of Engine Oil SLUDGE

Brands matter, quality matters and frequent oil changes will not alter this. It’s all based on the additive quality and it does effect the price.

Engine sludge occurs when oxidized oil and contaminants build up on engine surfaces. It can restrict the flow of oil to the point of engine failure and costly repairs.

As the oil installed in your vehicle ages, oxygen reacts with the lubricant, resulting in a permanent chemical change. The oil picks up oxygen and becomes thicker. Just like oxygen attacks metal surfaces and causes corrosion, it negatively affects lubricants and reduces their ability to lubricate, cool and protect components. Excessive heat speeds the oxidation process. In fact, every 18°F (10°C) increase in temperature doubles the rate of oxidation.

Adding to the challenge, contaminants begin to form during normal operation. In engines, hot combustion gases can blow by the piston rings and contaminate engine oil. Glycol from engine coolant, water that forms with temperature fluctuations and fuel are other common contaminants that affect lubricants. Left unchecked, contaminants accelerate chemical reactions, which overload the lubricant and cause the formation of sludge – a gelatinous substance that wreaks havoc in engines.

Sludge can block the oil passages and oil-pump pick-up screen, resulting in oil starvation. Often, the negative effects are cumulative rather than sudden. Many engines with variable valve timing (VVT) use oil pressure-operated mechanical devices to change valve timing, duration and lift. Sludge can plug the solenoid screen or oil gallies and impact the operation of VVT mechanisms, eventually leading to a costly repair bill. Sludge reduces efficiency and increases time and money spent on maintenance.

Signature Series vs. Sludge

Signature Series Synthetic Motor Oil was subjected to the Sequence VG test to measure its ability to prevent sludge. As expected, Signature Series produced an oil pick-up tube screen virtually free from sludge (see image below). Our unique combination of detergents and high-quality base oils control oxidation and sludge to keep engines clean and efficient.

AMSOIL synthetic lubricants not only resist oxidation and sludge formation, they can help clean existing deposits in neglected engines due to superior detergency. With modern engines and equipment demanding higher-quality lubricants, it’s good to know AMSOIL synthetic lubricants are formulated to protect against sludge in the toughest operating conditions.

Sludge: a gelatinous substance that wreaks havoc in engines.

 

 

 

 

Signature Series has 50 percent more
detergents¹ to help keep oil passages clean and promote oil circulation. It provides 90% better protection against sludge².

 

 

Synthetic Warehouse note:

We own an ecoboost engine (on our Ford van) so based on our personal experience the Signature Series is the only choice in these engines. They run extremely hot effecting the process mentioned above. Test the oil you are using now at or near Ford’s maximum interval and I’m certain it’s beyond it’s life!! TBN and Oxidation levels can be at dangerous levels.  Signature Series gives you that extra benefit of the doubt because when the detergents dissipate you can start to have severe wear from corrosion and of course needless deposits from sludge AND increased oil consumption. We eliminated 75% of a resent F150 Ecoboost V6 oil consumption problem using the Engine Flush (FLSH) and the Signature Series 5W-30 (ASL).

It’s not just about keeping your car or truck longer. It’s the issues our competition causes such as carbon coating your intake valves which is an issue on modern gasoline direct injection engines.  It’s very costly to clean these as there is no-longer the gasoline we enjoyed as the cleaning agent. Fuel is shot directly into the quench area so oil vapors land on valves and build up over time.
Some newer cars do have an additional injector in the throttle body for start-up and cleaning but this will not be the common setup.

So AMSOIL Signature series will keep these areas cleaner as that’s part of what you are paying for. AMSOIL’s lowest volatility is by far worth paying for. And in some cases you pay less for our product than several of the “so called synthetics”.

Make our Sioux Falls locations your only source for lubricants! Many have made the switch for good. We’re at 47073 98th St just behind Marlins Diner. Exit 73 on I29. Or call to make sure I’m there at 605-274-2580.

 

All You Need To Know About Motor Oil Cold Flow

Winter (Cold) flow wear factors in your engine

Engineers agree that most engine wear occurs during cold starts. While the exact percentage depends on several factors and is difficult to define, the reasons include the following…

  • A richer air/fuel mixture at startup washes oil from the cylinder walls
  • Condensation forms inside the engine that causes rust and corrosion
  • Cold piston rings and cylinders don’t seal as well, causing combustion gases to “blow by” the rings and contaminate the oil
  • Gravity causes much of the oil to fall back into the oil sump, leaving components unprotected
  • Cold oil doesn’t flow immediately at startup, temporarily starving the engine of oil

While all these factors are important, lack of oil due to poor cold-flow properties is the biggest culprit. Fortunately, there’s something you can do about it.

“Cold” isn’t just for winter

First, it’s important to define a “cold” start. While true that oil thickens more in sub-zero winter weather and causes increased starting difficulty, an engine is considered “cold” after it’s sat long enough to cool to ambient temperature, typically overnight. Even in warm climates, cold-start wear is a problem.

The oil inside your engine cools as it sits overnight. As it cools, its viscosity increases (it thickens). When it’s time to start your vehicle in the morning, the thicker oil doesn’t flow through the engine as readily as it does when it’s at operating temperature. It’s during this time that vital engine parts can operate without lubrication, increasing wear.

The problem is more pronounced the colder it gets, particularly if you’re using conventional motor oil.

Waxes solidify in the cold

Conventional lubricants contain paraffins, or waxes, that solidify when the temperature drops. These waxes cause the oil to thicken. In the comparison shown here, we cooled a conventional oil and AMSOIL Signature Series 5W 30 Synthetic Motor Oil (ASL) to -40ºF. The conventional oil on the left thickened so much it barely flowed from the beaker. If that oil were inside your engine on a cold morning, it could prevent the crankshaft from spinning fast enough to start the engine, leaving you stranded. Even if the engine started, you wouldn’t be out of the woods. Thick, cold oil can fail to flow through the tiny screen openings on the oil pickup tube (see facing page), starving the engine of oil for several vital moments before the oil begins to heat up and flow throughout the engine.

In addition, thick oil can fail to flow through the tiny passages in the crankshaft to lubricate the main bearings. Similar oil passages in the camshaft ensure the engine’s upper end is lubricated (see facing page). The further away from the oil pump these oil passages reside, the longer it takes the oil to reach components at startup, placing your engine at increased risk of wear.

Poor lubricant cold-flow properties can also affect variable valve timing (VVT) systems. Engines equipped with VVT have solenoids with tiny openings through which the oil flows and acts as a hydraulic fluid to actuate VVT components. The solenoid pictured to the right, from a Ford* 3.5L EcoBoost* engine, contains openings .007 inches across – about the thickness of two sheets of paper. Oil that fails to flow through these tiny passages reduces VVT performance and can trigger a check-engine light.

Here’s how to protect your engine

AMSOIL synthetic motor oils provide better cold-flow properties than conventional oils. Our synthetic base oils don’t contain the waxes inherent to conventional oils. As a result, they demonstrate reduced pour points and provide increased fluidity during cold starts. This translates into oil that flows almost immediately through the oil pickup screen and other tiny oil passages when you start your engine, protecting it against wear.

Look at the oil’s pour point to gauge its ability to flow quickly at startup, typically reported on the oil’s data bulletin. Pour point is the coldest point at which an oil will flow. Lower values equal improved cold-flow and maximum wear protection. AMSOIL Signature Series 5W-30 Synthetic Motor Oil, for example, provides a pour point of -50ºF (-58ºC).

Pique prospects’ curiosity

This type of information can help you create curiosity about AMSOIL products and lead someone from not looking for lubricants to looking for AMSOIL products. Ask pointed questions or provide useful information, such as…

  • Most engine wear occurs during cold starts. Do you take steps to guard against start-up wear?
  • Even in warm climates an engine is considered “cold” after it’s sat overnight.
  • Do you ever have trouble starting your truck on cold mornings?

Once they’ve shown interest, offer more technical explanation if required and offer AMSOIL synthetic motor oil as a solution to difficult cold starts and accelerated cold-start wear.

A little known fact

The differences in brands comparing a 5W-30 to the protection of a 10W-30 or 0W-30 can even be critical to the prevention of wear in the 50 to 65 degree F range. So just because you may live in a southern climate doesn’t mean you are in the green with a older specification viscosity.. A more advanced oil brand allows you to take advantage of the tech of the latest (lowest allowable) start-up viscosity year round.

How Engine Sludge Forms. And How To Prevent It.

Engine Sludge Is Easily Avoidable

Engine sludge.

It’s a back gelatinous substance that wreaks havoc in engines. And long before the engine’s demise, engine sludge can foul engine sensors and interfere with performance. Some mechanics call it the “black death.”

How does motor oil, which is fluid, become a semi-solid paste or gel inside an engine?

Here’s what we’ll cover:

  • How engine sludge forms
  • The effects of engine sludge
  • Synthetic oil helps prevent engine sludge
  • High-quality additives fight engine sludge
  • Severe service invites engine sludge

How engine sludge forms

Engine sludge is the result of a series of chemical reactions.

The lubricant degrades as it is exposed to oxygen and elevated temperatures. The higher the temperature, the more rapid the rate of degradation. In fact, every 18°F (10°C) increase in temperature doubles the rate of oxidation.
Many people still believe any oil is fine as long as you change it often but 95% of the brands out there do not address that inch of protection when you really need it!! We’ve all had issues where the engine is overheating or some situation where adequate lubrication isn’t available. AMSOIL offers 75% more protection when you need it and our diesel oils offer 6X more protection than required by industry testing.

The by-products of this reaction form highly reactive compounds that further degrade the lubricant. Their by-products react with other contaminants, forming organic acids and high-molecular-weight polymeric products. These products further react, forming the insoluble product known more commonly as sludge.

What begins as a thin film of lacquer or varnish deposits on hot or cold metal surfaces and bakes into an expensive mess.

The effects of engine sludge

Sludge can block the oil passages and oil-pump pick-up screen, resulting in oil starvation. Often, the negative effects are cumulative rather than sudden.

Many engines with variable valve timing (VVT) use oil-pressure-operated mechanical devices to change valve timing, duration and lift. Sludge can plug the solenoid screen or oil gallies and impact the operation of VVT mechanisms, eventually leading to a costly repair bill. Sludge reduces efficiency and increases time and money spent on maintenance.

Who doesn’t want a cooler engine? Sludge, even the early stages prevents the engine from dispersing heat efficiently. Why would you risk a Group III “synthetic” which does leave deposits adding to or resulting into an engine which struggles to exhaust heat.

Synthetic oil helps prevent engine sludge

Fortunately, sludge and varnish deposits are something oil manufacturers can control. Using thermally stable synthetic base oils reduces the rate of degradation (oxidation). (Yes – and that is “Real 100%” Synthetics – not the ones they currently call “Fully”..

Anti-oxidant additives help reduce the rate of degradation as well. One of the most widely used is zinc dithiophosphate. Not only is it an excellent oxidation inhibitor, it is an outstanding anti-wear additive as well.

High-quality additives fight engine sludge

We can further address many of the issues occurring after the initial oxidation stage.

Additives, such as detergents and dispersants, are commonly part of motor oil formulation. They help promote the suspension of contaminants within the oil and keep them from agglomerating.

Detergents, which are also alkaline in nature, assist in neutralizing acids generated in the sludge-building process. Anti-oxidant, dispersant and detergent additives are consumed during use.

To achieve maximum life expectancy, use an oil with high concentrations of anti-oxidant, dispersant and detergent additives.

AMSOIL Signature Series Synthetic Motor Oil, for example, has 50 percent more detergents* to help keep oil passages clean and promote oil circulation. It provides 90 percent better protection against sludge**.

Signature Series Synthetic Motor Oil was subjected to the Sequence VG test to measure its ability to prevent sludge. Signature Series produced an oil pick-up tube screen virtually free from sludge. Our unique combination of detergents and high-quality base oils control oxidation and sludge to keep engines clean and efficient.

PDF of the test where AMSOIL has this done (Southwest Research)

AMSOIL Signature Series virtually prevented engine sludge on this oil pick-up screen.

Buy Signature Series

Severe service invites engine sludge

Equipment operating conditions also influence the likelihood of sludge or varnish issues.

Stop-and-go driving, frequent/long-term idling and operation in excessively hot or cold weather can increase the likelihood of sludge and varnish, especially if using more volatile conventional oils. If sludge has already formed, you can use an engine flush to clean sludge from your engine.

Interestingly, most auto manufacturers note in their owner’s manual that operation under any of the above conditions is considered severe service and requires more frequent oil changes.

From a mechanical standpoint, things like adding too much oil to the oil sump, antifreeze contamination, excessive soot loading, excessive oil foaming, poor engine-combustion efficiency, excessive blow-by and emission-control-system issues can all lead to the formation of sludge and varnish.

By practicing good maintenance and using properly formulated, premium synthetic lubricants, like AMSOIL synthetic motor oil, your vehicle won’t succumb to the “black death.”

Taking it a step further which many of our customers do – to make sure your vehicle is always running in peak condition one thing is to have your oil analyzed. I do it not so much to see how the oil is doing but to measure what may be going on in the engine to deplete detergents or to test for any out of typical wear levels, fuel in the crankcase, and to see if the viscosity is still on par.  Oil analysis kits are easy to use especially when you have the dipstick extraction pump.

*vs. AMSOIL OE Motor Oil
**Based on independent testing of AMSOIL Signature Series 5W-30 in the ASTM D6593 engine test for oil screen plugging as required by the API SN PLUS specification.

Where Oil Goes and What it Does

The Responsibilities of Your Motor Oil

A typical engine contains hundreds of parts, none of which could function properly without oil. Far from a simple commodity, oil is a dynamic enabler of performance. It must lubricate, cool, protect, seal, actuate components and more. And it must do it all while exposed to tremendous heat and stress. Here, we highlight key areas where oil goes inside your engine and what it does once it’s there.

Variable Valve Timing (VVT)

To increase fuel economy and reduce emissions, most modern engines use VVT systems to adjust when the valves open and close. VVT systems use motor oil as a hydraulic fluid to actuate cam-phaser components. Solenoids, like the one shown here, control cam-phaser timing. These solenoids contain tiny openings through which the oil must flow. Even minimal varnish or deposits can disrupt the system, triggering a check-engine light. The oil must maintain viscosity to function as a hydraulic fluid while resisting deposits to maximize VVT system performance.

Valves and Seals

Valve seals prevent oil from running down the valve stems. This keeps the oil on valvetrain components and prevents it from entering the intake and exhaust ports and burning, increasing oil consumption. The oil must condition these seals to prevent drying, cracking and leaking. The oil also helps cool the valves and control cylinder-head deposits, helping prevent valve sticking.

Main Seals

The seals at the ends of the crankshaft keep the oil inside the engine. The oil must condition seals to prevent drying, cracking and leaking.

Wrist Pins & Undercrowns

Crankshaft eccentrics splash-lubricate the cylinders, wrist pins and piston undercrowns. Some engines have small nozzles that spray oil directly onto the wrist pins and undercrowns. The rapidly spinning crankshaft causes air entrainment in the oil, creating foam. If foam bubbles in the oil pass between metal parts, they collapse and cause metal-to-metal contact. The oil must contain anti-foam additives to quickly dissipate foam. The oil must also contain detergent additives to help keep the wrist pins and undercrowns clean.

Connecting Rods & Main Bearings

Combustion drives the pistons down the cylinder, creating intense pressure between the connecting rods, main journals and bearings. Oil molecules act like microscopic ball bearings that support this pressure and allow the rods and crankshaft to rotate without metal-to-metal contact. The oil must maintain its protective viscosity despite increased pressures, temperatures and shearing forces. If the fluid film weakens, the oil will squeeze from between the journal and bearing clearances, resulting in metal-to-metal contact and bearing wear.

Camshaft

The camshaft and lifters open and close the intake and exhaust valves. To prevent wear, the oil must form a strong fluid film that separates the cam lobes and lifters. It also must contain robust anti-wear additives to maximize the life of the camshaft and bearings. As the image below shows, AMSOIL Signature Series 0W-20 Synthetic Motor Oil did an excellent job protecting against cam wear in rigorous, third-party testing.

Pistons, Rings & Cylinders

The pistons compress the air in preparation for combustion. The piston rings perform several critical functions: they must seal the combustion chamber, return excess oil on the cylinder walls to the sump and transfer extreme piston-crown heat to the cylinder walls.

To prevent wear despite intense heat and shearing forces, oil must maintain a strong, consistent film between the rings and cylinder walls. It also must prevent deposits that cause ring sticking, increased oil consumption, compression changes and low-speed pre-ignition (LSPI).

Signature Series Synthetic Motor Oil achieved 100 percent protection against LSPI1 in the engine test required by the GM* dexos1® Gen 2 specification – zero occurrences were recorded throughout five consecutive tests.

Oil Galleries & Passages

An engine contains an intricate network of oil galleries and passages that carry oil to components. Passages in the crankshaft, for example, carry pressurized oil to the rod and main bearings, while similar passages in the upper end carry oil to the valvetrain. Oil that thickens in the cold can fail to flow through narrow passages and starve the engine of oil. Sludge, meanwhile, can plug passages and have the same effect. The oil must remain fluid when the temperature drops, and it must prevent sludge.

Oil Pick-Up Tube Screen

The oil pump draws oil through a fine screen and pressurizes it so it can flow through the oil galleries and passages to the bearings and valvetrain. Sludge can plug the screen, starving the engine of oil. Oil that thickens too much to pass through the screen has the same effect. Therefore, oil must remain fluid when cold to pass through the screen and flow throughout the engine at startup (when most wear occurs). The oil also must prevent sludge to keep galleries and passages clean, ensuring maximum oil flow.

Perfect Pairing:Signature Series Motor Oil and Ea® Oil Filters

Perfect Pairing:Signature Series Motor Oil and Ea® Oil Filters

 Combining premium motor oil with a premium oil filter is necessary for total engine protection.

Complete engine protection is a team sport. The long-term effectiveness of a quality motor oil is often hindered by poor filtration. At the same time, the superior capabilities of a premium oil filter remain unrealized when combined with a sub-par motor oil. A pairing of top-quality oil and filtration is required for best results, especially with the advanced technology found in modern vehicles.

Protecting the Latest Technology

Variable Valve Timing (VVT)

The majority of vehicles rolling off the assembly line today feature variable valve timing (VVT). Every component in the system must function properly in order to advance or retard valve timing at the correct intervals. The solenoid pictured, from a 3.5L Ford* EcoBoost* engine, contains openings .007 of an inch across, which is about the thickness of two sheets of paper. The slightest amount of deposits in these openings can restrict oil flow and negatively affect the system.

AMSOIL Signature Series Synthetic Motor Oil resists deposits and sludge, while the superior efficiency of Ea Oil Filters traps and holds any existing deposits that could compromise VVT components. ­

Turbochargers

Turbochargers are predicted to be in most new passenger cars/light trucks by 2020. This technology increases engine efficiency and performance, but at the cost of elevated engine temperatures. Low-quality motor oil increases the risk for high-temperature bearing deposits that lead to reduced turbocharger performance or failure.

Signature Series 5W-30 Synthetic Motor Oil protects against harmful deposits on turbochargers 4X better than Mobil 1® Extended Performance and 3.6X better than Royal Purple® in industry-standard testing**. AMSOIL Ea Oil Filters are engineered to maintain the higher oil flow rate of modern engines, sending the appropriate amount of filtered oil to the turbocharger’s vital bearing. Bearing clearances, in general, have become tighter, making filter efficiency even more important to prevent engine damage.

Tag Team Protection

Working in tandem, AMSOIL Signature Series Motor Oil and AMSOIL Ea Oil Filters provide complete engine protection. Signature Series Motor Oil withstands the rigors of extreme heat and resists deposits and sludge, while Ea Oil Filters provide the capacity and efficiency that today’s advanced engine components require.

The Long Run

Turbochargers and VVT systems are here to stay. AMSOIL products are uniquely positioned to meet the challenges they present.
Signature Series Synthetic Motor Oil

  • Provides 75 percent more engine protection against horsepower loss and wear than required by a leading industry standard ***
  • Maximum cleanliness
  • Exceptional extreme-temperature protection

AMSOIL Ea Oil Filters

  • Filtering efficiency of 98.7 percent at 20 microns
  • Greater capacity than competing filter brands
  • Maximum efficiency without restricting flow
  • Extended service life

 

VVT solenoids often contain tiny oil-flow passages that can easily clog with deposits if maintenance is neglected or low-quality oil or filters are used.

*All trademarked names and images are the property of their respective owners and may be registered marks in some countries. No affiliation or endorsement claim, express or implied, is made by their use. All products advertised here are developed by AMSOIL for use in the applications shown.

**Based on independent, third-party testing of AMSOIL® Signature Series 5W-30, Mobil1® Extended Performance 5W-30 and Royal Purple® API 5W-30 in the ASTM D6335 bench test required by the API SN Resource Conserving specification.

***Based on independent testing of AMSOIL Signature Series 5W-30, in ASTM D7320 as required by API SN specification.