Skip to main content

Save Every Drop of Horsepower with UPPER CYLINDER LUBRICANT

AMSOIL UPPER CYLINDER LUBRICANT:  I use it and it works!

Now on the market for about a year: AMSOIL Upper Cylinder Lubricant (UCL) is the latest addition to the gasoline additive lineup. It delivers more lubricity than the competition and battles ethanol-related corrosion.

Fuel Additive Product Overview

Upper cylinders are one of the toughest areas of an engine to lubricate due to the intense heat of combustion and the design of today’s vehicles. New AMSOIL Upper Cylinder Lubricant delivers a much-needed layer of protection to this trouble area to help fight piston-ring and cylinder wear, maximizing engine compression and horsepower. Its lubricity improvers aid in protecting fuel injectors and other fuel-system components from wear, helping ensure excellent performance and long life.

Plus, it really works. AMSOIL Upper Cylinder Lubricant delivers 18 percent more lubricity than Lucas* and 20 percent more than Sea Foam* for better retention of horsepower and fuel economy. ¹

Inhibits Corrosion

Upper Cylinder Lubricant uses potent corrosion inhibitors to coat metal surfaces, block out moisture and stop deterioration before it starts. This is particularly important when using gasoline that contains ethanol due to its propensity to attract water and hasten corrosion. Inhibiting corrosion maximizes component life and reduces wear in the engine’s top-end to guard against compression loss and maintain optimum power.

Keeps Injectors Clean

Upper Cylinder Lubricant contains detergent additives designed to maintain injector cleanliness. It’s designed to work in concert with AMSOIL P.i. Performance Improver (API) to maintain injector and combustion-chamber cleanliness, retain fuel-economy and performance gains and maximize component life.

Capless-Compatible Packaging

The AMSOIL Upper Cylinder Lubricant bottle is fully compatible with capless fuel systems. Many new vehicles have replaced traditional fuel caps with capless systems. The threads on most bottles restrict them from opening the flap inside the fuel neck and also make removing the bottle difficult. Our packaging makes it easy to insert, pour and remove the bottle.

 

¹ Based on independent testing of AMSOIL Upper Cylinder Lubricant, Lucas Upper Cylinder Lubricant and Sea Foam Motor Treatment obtained on 02/13/2019 using the ASTM D6079 modified for use with gasoline.

User Comments:

I’ve been using this for almost a year now.  In my Ford Focus which is the 2.0 non-turbo I can now use 10% ethanol and get over 40 MPG! I drive from Sioux Falls to Omaha and back often so I can see a difference. It seems the only logical reason this happens is the better lubricity in the head and cylinder ring area. There must be a good amount of friction there. And the parts of the lubricant perhaps seal the rings and valves better as well as the valve stem.

As soon as I get 1000 miles on my Corvair (new engine and heads) I’ll try this as there is even greater friction on horizontal cylinders. It seems to sort of work like lead once did.

If you are going on a long trip keep this in the tank for maximum efficiency. The upper cylinder areas need lubrication. Adding this to the fuel relieves more stress from the engine thus better long term efficiency.

The best way to buy is by the case reducing the price low enough to only cost pennies per tank of gasoline.  Thus we keep several cases in stock for your use.

Find out more about this newer AMSOIL product Upper Cyl Lube!

A closer Look At Engine Sludge

Preventing Causes of Engine Oil SLUDGE

Brands matter, quality matters and frequent oil changes will not alter this. It’s all based on the additive quality and it does effect the price.

Engine sludge occurs when oxidized oil and contaminants build up on engine surfaces. It can restrict the flow of oil to the point of engine failure and costly repairs.

As the oil installed in your vehicle ages, oxygen reacts with the lubricant, resulting in a permanent chemical change. The oil picks up oxygen and becomes thicker. Just like oxygen attacks metal surfaces and causes corrosion, it negatively affects lubricants and reduces their ability to lubricate, cool and protect components. Excessive heat speeds the oxidation process. In fact, every 18°F (10°C) increase in temperature doubles the rate of oxidation.

Adding to the challenge, contaminants begin to form during normal operation. In engines, hot combustion gases can blow by the piston rings and contaminate engine oil. Glycol from engine coolant, water that forms with temperature fluctuations and fuel are other common contaminants that affect lubricants. Left unchecked, contaminants accelerate chemical reactions, which overload the lubricant and cause the formation of sludge – a gelatinous substance that wreaks havoc in engines.

Sludge can block the oil passages and oil-pump pick-up screen, resulting in oil starvation. Often, the negative effects are cumulative rather than sudden. Many engines with variable valve timing (VVT) use oil pressure-operated mechanical devices to change valve timing, duration and lift. Sludge can plug the solenoid screen or oil gallies and impact the operation of VVT mechanisms, eventually leading to a costly repair bill. Sludge reduces efficiency and increases time and money spent on maintenance.

Signature Series vs. Sludge

Signature Series Synthetic Motor Oil was subjected to the Sequence VG test to measure its ability to prevent sludge. As expected, Signature Series produced an oil pick-up tube screen virtually free from sludge (see image below). Our unique combination of detergents and high-quality base oils control oxidation and sludge to keep engines clean and efficient.

AMSOIL synthetic lubricants not only resist oxidation and sludge formation, they can help clean existing deposits in neglected engines due to superior detergency. With modern engines and equipment demanding higher-quality lubricants, it’s good to know AMSOIL synthetic lubricants are formulated to protect against sludge in the toughest operating conditions.

Sludge: a gelatinous substance that wreaks havoc in engines.

 

 

 

 

Signature Series has 50 percent more
detergents¹ to help keep oil passages clean and promote oil circulation. It provides 90% better protection against sludge².

 

 

Synthetic Warehouse note:

We own an ecoboost engine (on our Ford van) so based on our personal experience the Signature Series is the only choice in these engines. They run extremely hot effecting the process mentioned above. Test the oil you are using now at or near Ford’s maximum interval and I’m certain it’s beyond it’s life!! TBN and Oxidation levels can be at dangerous levels.  Signature Series gives you that extra benefit of the doubt because when the detergents dissipate you can start to have severe wear from corrosion and of course needless deposits from sludge AND increased oil consumption. We eliminated 75% of a resent F150 Ecoboost V6 oil consumption problem using the Engine Flush (FLSH) and the Signature Series 5W-30 (ASL).

It’s not just about keeping your car or truck longer. It’s the issues our competition causes such as carbon coating your intake valves which is an issue on modern gasoline direct injection engines.  It’s very costly to clean these as there is no-longer the gasoline we enjoyed as the cleaning agent. Fuel is shot directly into the quench area so oil vapors land on valves and build up over time.
Some newer cars do have an additional injector in the throttle body for start-up and cleaning but this will not be the common setup.

So AMSOIL Signature series will keep these areas cleaner as that’s part of what you are paying for. AMSOIL’s lowest volatility is by far worth paying for. And in some cases you pay less for our product than several of the “so called synthetics”.

Make our Sioux Falls locations your only source for lubricants! Many have made the switch for good. We’re at 47073 98th St just behind Marlins Diner. Exit 73 on I29. Or call to make sure I’m there at 605-274-2580.

 

Small engine won’t start? Identifying the Cause.

Small engine won’t start?

Bad gas is the number-one reason, and here’s how to prevent it.

Len Groom | TECHNICAL PRODUCT MANAGER, POWERSPORTS

In northern Minnesota, where I live, the temperature occasionally breaks 80ºF (27ºC) in the summer. When it does, it’s time to fire up my Jet-Skis* and hit the lake. The last thing I want to do on a sunny summer day is mess around with equipment that refuses to start or run properly.

Bad gasoline is the number-one reason seasonal equipment starts hard or runs rough. Over time, gasoline changes, leaving behind gums, varnish and other solids that foul the fuel system and prevent gas from flowing into the combustion chamber. In severe cases, gasoline can change so dramatically that it no longer ignites.

Gasoline is predominantly a mixture of carbon and hydrogen atoms bonded together into energy-dense hydrocarbons. Like conventional base oils, it’s derived from crude oil via a distillation process that uses heat, pressure and other catalysts to create different fractions. Gasoline is comprised of hydrocarbons that are lighter than those found in, for example, diesel fuel or conventional base oils. Refiners add ethanol to the formulation, typically 10 percent, but as high as 85 percent.

Time Takes Its Toll – You Must Treat Gasoline

Time, however, takes its toll on gasoline. Exposure to heat, humidity, atmospheric pressure, oxygen and other variables degrade fuel.

In addition to gums and varnish becoming more concentrated and less soluble as lighter hydrocarbons evaporate, gas is continually oxidizing, which further contributes to varnish and other gunk. Gasoline oxidizes more quickly than motor oil and its negative effects are more immediately noticeable. That’s why it’s important to use high quality gas and store it in approved containers where air infiltration is limited, like inside a ventilated garage or shed, and not in the back of your truck or under the deck.

Meanwhile, ethanol added to gasoline at the refinery can absorb water from the atmosphere, which can lead to phase separation, which occurs when ethanol and gas separate, much like oil and water. Ethanol that has absorbed enough moisture and has sat long enough can foul the fuel system and prevent the engine from starting.

AMSOIL Fights Corrosion

AMSOIL provides corrosion protection Sea Foam® Motor Treatment can’t match, helping maintain power and performance and keeping metal looking like new even when subjected to salt water.  ?

? Based upon independent testing of AMSOIL Gasoline
Stabilizer obtained Nov. 8, 2018 and Sea Foam Motor
Treatment purchased Oct. 25, 2018 in a modified NACE
TM0172 using synthetic sea water per ASTM D665 part B.

This all sounds dire, but it’s nothing treating your gasoline with AMSOIL Gasoline Stabilizer (AST) can’t solve. Gasoline Stabilizer keeps fuel fresh up to 12 months. AMSOIL Quickshot® (AQS) stabilizes gasoline during short-term storage up to six months, in addition to providing potent cleaning benefits and protection against ethanol issues.

What does stabilizer do?

That explanation may suit some people, but this is Tech Talk, so let’s look at the chemistry behind gasoline stabilizers.

You’ve probably heard terms like “free radicals” and “antioxidants” in relation to your health. A free radical is an unpaired electron, and most are unstable and highly reactive. They can either donate an electron to, or accept an electron from, other molecules. This starts a chain reaction that can lead to oxidative stress and cell damage. Left unchecked, free radicals can lead to health problems, like cardiovascular disease and cancer. To help fight free radicals, we should eat plenty of foods rich in antioxidants, which lessen their effects. Antioxidants can “donate” an electron to free radicals or trap them, effectively reducing their instability without becoming unstable themselves. Antioxidants aren’t silver bullets, but they go a long way toward improving our health.

By analogy, gasoline stabilizer is an antioxidant for your gasoline. It disrupts the free-radical-induced chain reaction that causes gas to oxidize and form varnish and gums. Some stabilizer products, like Quickshot, also contain chemistry that increases solvency and breaks down existing varnish, helping clean a dirty carburetor and restore performance. As shown, Gasoline Stabilizer also fights corrosion better than Sea Foam Motor Treatment.

Neglecting to stabilize your gas can lead to all sorts of headaches when it’s time to remove your lawnmower, generator, string trimmer or Jet-Ski from storage. For best results, stabilize your gasoline all year long. That’ll ensure your equipment is ready to roll when you are.

How to Store a Snowblower

How to Store your Snowblower properly. Prevent damage during summer season.

Storing a snowblower properly is vital to ensuring it fires up when the snow eventually returns. When the first storm of the season dumps eight inches of snow on your driveway, you don’t want to be messing around in the garage when your snowblower won’t start.

fuel stabilizer is key for storing the damn snowblower

Time needed: 30 minutes.

Step-by-step: How to store a snowblower

  1. Stabilize the gas

    This is the most critical step to ensuring the snowblower starts right away in the winter.

    Gasoline begins to break down in as few as 30 days. Varnish and gums begin to form, which clog the tiny fuel passages in the carburetor. I can tell you from experience that it doesn’t take much to clog a snowblower carburetor and prevent it from starting.

    AMSOIL Gasoline Stabilizer keeps fuel fresh up to 12 months. As the image shows, it also does a great job fighting corrosion to keep metal fuel tanks and other components clean and working properly. After adding stabilizer, run the engine for a minute or two to distribute treated gas throughout the fuel system.

    Seafoam sucks

  2. Change the oil

    Running the engine to distribute gas stabilizer has the added benefit of warming the oil so it flows more easily.

    Changing oil before you store your snowblower removes acids and other combustion by-products so they’re not sitting in the engine throughout the summer. Plus, the engine will be ready with fresh oil come winter.

    Don’t cheap out on oil – you likely spent upward of $1,000 on your snowblower, so you want it to last. Plus, small engines are tougher on oil than most people think. They’re air-cooled, meaning they run hotter than automotive engines, typically don’t include an oil filter, further stressing the oil, and are often neglected.

    AMSOIL Synthetic Small-Engine Oil is a commercial-grade formulation that fights wear and deposits in the toughest conditions. It also flows readily in the cold for maximum start-up protection.

  3. Fog the engine

    Simply remove the spark plug and apply fogging oil. It coats the cylinder wall and piston with oil to help prevent corrosion from forming during the summer. If corrosion forms, it flakes off into the oil and scours the bearings and other components, causing wear.

  4. Check the gear lube

    Remove the gearbox fill bolt and ensure the housing contains sufficient oil. Check your owner’s manual for the proper lubricant.

  5. Inspect the belts

    Now’s the time to check drive belts for cracks or abrasions. Replace them if needed.

    Otherwise, I promise you they’ll break at the worst time, like at 5:30 a.m. on a cold November morning after a wet, heavy snowfall. Be proactive and save yourself a ton of grief down the road.

  6. Check the linkages, auger housing and other areas

    Before you store a snowblower, look it over from top to bottom. Check for damaged parts and linkages. Lubricate pivot points with a spray protectant, like AMSOIL MPSpray the auger housing to guard against rust formation over the summer.

    Don’t overlook this step. While examining my snowblower last year, I realized three of the four bolts that hold the auger housing and chute (sometimes called the “bucket”) to the chassis had sheared. One bolt was literally holding the snowblower together.

    The following Thanksgiving weekend, two feet of snow blanketed Duluth, Minn. I spent eight hours moving snow. Imagine if I hadn’t repaired the snowblower the prior spring and that last bolt had given out halfway down my driveway?

    Again, be proactive now to avoid a ton of problems later.

  7. Store the snowblower inside

    Finally, park your snowblower in the back of the garage or in a shed for the summer to protect it against rain. If you have no choice but to store it outside, cover it securely. I bought a nice cover at Kmart a few years ago and it still does the job.

    Following these steps will help ensure your snowblower is ready to go the next winter.

Five reasons to use motorcycle oil in your bike

You can use Car Motor Oils in your Bike if you Add Two More Wheels.

You wouldn’t want to buy a used bike if motorcycle oil wasn’t used.

Impressive performance happens when you are using the right oil in the right application.

Len Groom | TECHNICAL PRODUCT MANAGER, POWERSPORTS

The results of a study from lubricant additive manufacturer Infineum caught my eye recently. A survey of 1,000 bikers revealed that fewer than 60 percent are using a motorcycle specific oil in their motorcycles. Interestingly, more than three quarters of respondents think they’re using a motorcycle oil. Clearly there’s confusion in the market that requires clarification.

Let’s start with why you should always use motorcycle oil in a motorcycle engine. I’ll boil it down to five key reasons.

1) Motorcycles run hotter

In general, automotive engines are water-cooled. A typical automotive engine can reach 235ºF (113ºC) during operation, which is plenty hot. Motorcycles, however, run even hotter, particularly big, air-cooled V-twins, like your average Harley Davidson. They rely on air flowing across the engine for cooling, which is inherently less efficient at dissipating heat. This configuration poses additional challenges in stop-and-go traffic when there’s little airflow, particularly on hot summer days. In fact, testing of a 2012 Harley Street Bob in our mechanical lab demonstrated an average cylinder head temp of 383ºF (195ºC).

Heat that intense causes some oils to thin and lose viscosity, which reduces wear protection. High heat also hastens chemical breakdown of the oil (called oxidation), which requires you to change oil more often. In extreme cases, the bike’s temperature sensors can shut down the engine if it gets too hot.

2) High rpm destroys lesser oils

Motorcycles tend to operate at engine speeds significantly higher than automobiles. Your average metric sport bike easily eclipses 10,000 rpm. Some have even pushed 20,000 rpm. Your car or truck’s redline doesn’t even come close. The hydrocarbon chains get ripped to shreds.. You can feel the after-effects through the peg and handle bars.

High rpm places additional stress on engine components, increasing the need for wear protection. It subjects oils to higher loading and shear forces, which can rupture the lubricant film and reduce viscosity, both of which increase wear. High rpm also increases the likelihood of foaming, which can reduce an oil’s load carrying ability, further inviting wear.

3) Increased power density = increased stress

Motorcycle engines produce more horsepower per cubic inch than automobiles. They also tend to operate with higher compression ratios. Increased power density and compression lead to higher engine temperatures and increased stress. This places greater demands on motorcycle oil to fight wear, deposits and chemical breakdown.

4) Must also protect transmission – prevent viscosity loss

Many motorcycles have a common sump supplying oil to both the engine and transmission. In such cases, the oil is required to meet the needs of both the engine and the transmission gears. Transmission gears can shear the oil as it’s squeezed between gear teeth repeatedly at elevated rpm, causing some oils to lose viscosity. Many motorcycles also incorporate a wet clutch within the transmission that uses the same oil. Motorcycle wet clutches require a properly formulated lubricant that meets JASO MA or MA2 frictional requirements.

5) Storage invites corrosion

Whereas automobiles are used almost every day, motorcycle use is usually periodic and, in many cases, seasonal. These extended periods of inactivity place additional stress on motorcycle oils. In these circumstances, rust and acid corrosion protection are of critical concern.

While a good passenger car motor oil (PCMO) hits many of these performance areas, it doesn’t get them all.

PCMOs usually contain friction modifiers to help boost fuel economy. Furthermore, PCMOs don’t meet JASO MA or MA2 requirements. If used in a motorcycle, they can interfere with clutch operation and cause slippage. And no rider wants to deal with a slipping clutch. Likewise, motor oils have no natural rust or corrosion resistance. Instead, corrosion inhibitors must be added to the formulation, and typical motor oils don’t contain them.

AMSOIL Synthetic Motorcycle Oil is designed for the unique demands of motorcycles. It’s formulated without friction modifiers for precise, smooth shifts. It also contains a heavy dose of corrosion inhibitors to protect your engine against rust during storage. And it’s designed to resist viscosity loss due to shear despite intense heat and the mechanical action of gears and chains.

Ensure your customers are using AMSOIL synthetic motorcycle oil in their bikes for the best protection this riding season.

And people who use car oil in their bikes probably use the term “drive” when referring to riding.