Skip to main content

ILSAC GF-6, API SP & dexos: Making Sense of New Oil Specs.

ILSAC GF-6, API SP & dexos: New Oil Specifications

As engine-operating conditions grow more severe, so do the demands placed on your motor oil. Hence the need for updated oil specifications, like ILSAC GF-6, API SP and GM dexos1 Gen 2.

New engine hardware such as turbochargers, direct injection and variable valve timing (VVT) place increased stress on your engine oil. This, in turn, has led to the introduction of more strict more oil specifications.

Here’s what we’re going to cover:

  • How strict fuel-economy standards increase engine stress
  • What is LSPI (low-speed pre-ignition)?
  • How motor oil helps prevent LSPI
  • ILSAC GF-6, API SP and GM dexos
  • Do AMSOIL synthetic motor oils meet GM dexos, ILSAC GF-6 and API SP specs?

 

video
play-sharp-fill

Improved fuel economy

Corporate Average Fuel Economy (CAFE) standards require a fleet-wide average of about 40 mpg by 2026 in the United States.

To meet these requirements the automotive industry has focused on smaller, more fuel-efficient engines. In fact, most new vehicles now feature gasoline direct-injection (GDI), a turbocharger or both (T-GDI).

Severe operating conditions

Smaller, more-efficient engines that make the power and torque of higher-displacement engines undergo more severe operating conditions that can lead to…

  • Severe engine knock, also called low-speed pre-ignition (LSPI)
  • Increased engine temperatures
  • Compromised fuel injectors
  • Increased wear and deposits if the oil isn’t up to snuff

The biggest motor-oil-related challenge on the horizon is LSPI, which can destroy pistons and connecting rods.

LSPI can cause cracked pistons and rods

LSPI is the spontaneous ignition of the fuel/air mixture before spark-triggered ignition.

It is another version of pre-ignition. Pre-ignition (engine knock) has been around since the beginning of internal combustion engines.

LSPI, however, occurs under low-speed, high-torque conditions, such as taking off from a stoplight in T-GDI engines.

This scenario can create conditions where the fuel/air ignites too early in the combustion cycle, throwing off the engine’s timing.

The expanding combustion charge collides with the piston as it’s moving up the cylinder, potentially destroying the pistons or connecting rods.

Oil can help prevent LSPI

Experts suggest the cause is due in part to oil/fuel droplets or deposits in the cylinder igniting randomly. The droplets and deposits contain enough heat to ignite the air/fuel mixture before spark-triggered ignition.

Oil formulation can play a role in reducing LSPI.

Certain motor oil ingredients can promote LSPI, while others can help reduce it. It’s tempting to think, “Well, dump a bunch of ingredients into your formulations that help reduce LSPI.” But some ingredients that help reduce LSPI have been limited over the years in motor oil formulations for other reasons.

It truly is a scientific balancing act confronting oil formulators. It’s no easy task to formulate motor oils that deliver excellent wear protection, resist the increased heat of turbocharged engines, prevent deposits, act as a hydraulic fluid and, now, combat LSPI.

The performance of the entire formulation – not just one or two ingredients – is what counts.

ILSAC GF-6, API SP and GM dexos

Next-generation motor oils need to pass an LSPI test to meet these new demands.

General Motors was first out of the gate and required oils to pass its own LSPI test. Its GM dexos1 Gen 2 specification took effect Aug. 31, 2017.

The latest American Petroleum Institute (API) specification, API SP, took effect in May 2020. As did ILSAC GF-6, the latest spec from the International Lubricants Standardization and Approval Committee. For the most part, it mirrors API specifications.

ILSAC has set a new precedent in the passenger-car motor oil market by splitting its specification into two parts. One of the main differences between the two specifications is compatibility.

See the chart below. Both versions focus on wear protection, prevention of LSPI and improved engine cleanliness. However, GF-6B features a more stringent fuel economy test.

Engine oils can easily be identified as ILSAC GF-6A or 6B by the API emblem on the front label of the packaging. A shield represents the GF-6B specification, while the traditional starburst indicates a GF-6A product.

Both ILSAC specifications meet the industry-standard API SP specification which is most commonly found in owners’ manuals.

Relax…for now

For now, you don’t have to worry too much about LSPI.

Your vehicle’s computer is programmed to avoid operating conditions that lead to LSPI. But, operating your engine under those conditions does promise fuel economy gains.

AMSOIL meets the latest specs

AMSOIL synthetic motor oils meet or exceed the latest industry standards, including ILSAC GF-6, API SP and GM dexos1 Gen 2.

You can safely use our synthetic motor oils in engines that call for those specifications.

In fact, AMSOIL achieved 100 percent protection against LSPI in the engine test required by GM’s dexos1 Gen 2 specification.*

*Based on independent testing of Signature Series 5W-30, XL 5W-30 and OE 5W-30 in the LSPI engine test as required for the GM dexos1® Gen 2 specification.

SCCA Mazda Engine Builder Trusts Only AMSOIL

Championship Engine Builder Trusts Only AMSOIL

More than 1,080 miles covering six states separate Jesse Prather Motorsports, in Topeka, Kansas, from Virginia International Raceway.

And yet Jesse Prather’s influence at the track in October for the Sports Car Club of America’s (SCCA) annual “Runoffs” was unmistakable as an estimated 20 cars had one of his motors under its hood. In 2017, that number was 32. And two of those cars won national championships that year.

Top driver becomes top engine builder

That’s all to say that Jesse Prather is a big name in SCCA road-racing circles, particularly for competitors at the Runoffs, the SCCA’s biggest event. Many of them source their engines from Prather’s shop, where he puts his wealth of racing experience to work.

Although Prather has raced himself, winning three SCCA national championships, and has built race cars, today he mostly builds high-performance engines. He’s developed a niche building Mazda engines, but he also builds Honda, BMW and other foreign-made engines.

No doubt his father’s experience racing British sports cars for parts of three decades played a part in Prather’s career. Prather’s father opened a racing shop in Kansas around 1990, where Jesse worked for 10 years. It was there he started working on Mazdas.

“A customer wanted me to build a rotary engine for his RX-7, and it just kind of snowballed from there,” Prather said. His success behind the wheel laid the foundation for his success as an engine builder.

“[When you win], people want to know where you’re getting your equipment from. I built it all myself, so that’s how I started this business.”

AMSOIL Break-In Oil key to success

Today, Prather runs his own business, and AMSOIL products are a huge part. In fact, every engine that leaves Jesse Prather Motorsports is shipped with AMSOIL Break-In Oil inside the crate. It was this product that drew Prather to AMSOIL several years ago.

“I was looking for an oil that would seat rings properly, but that I could also run hard on the dyno,” said Prather. “With a lot of the break-in oils out there at that time, you couldn’t run the engine hard on the dyno because it couldn’t take the heat that we put them through on initial break-in.”

Break-In Oil (SAE 30)

Engine break-in is vital to building a championship racing engine. If the piston rings don’t seat properly against the cylinder wall, engine compression can suffer, reducing horsepower.

In Prather’s case, engine design posed additional challenges.

“We used forged pistons with thin rings to reduce drag in the bottom end of the engine,” he said. “I used to always have a lot of trouble getting these rings to break-in to the cylinder wall.”

Prather tried several techniques to solve the problem, but AMSOIL Break-In Oil proved most successful. “Now the rings seat in the first 10-15 minutes versus having to run an engine 2-3 hours before the rings seat – and sometimes they’d never seat,” he said.

“Every single engine I ship has AMSOIL Break-In Oil shipped in the crate with the engine. It’s a required step to using a Jesse Prather Motorsports racing engine.”

Jesse Prather

Racing oil just as important

Prather’s use of AMSOIL products doesn’t end after break-in.

He recommends AMSOIL DOMINATOR® Synthetic Racing Oil in his engines due to its excellent wear protection and heat resistance.

(Should you use racing oil in your daily driver? Find out here.)

“Even after running fairly high oil temperatures during a race, the oil does a good job absorbing the contaminants we put it through,” said Prather.

Most customers have their engines rebuilt after two years or 20 hours. It’s then that he sees DOMINATOR’s excellent performance first-hand.

“When I get these motors back, I see that the bearings have been protected. We don’t have bearing scuffing. We don’t have bearing deterioration. I don’t see extensive wear in some of the chain-driven camshafts. I don’t see excessive wear on the bore or on the pistons.”

“It’s amazing; it just works. And we abuse it. This oil gets abused day in and day out.”

Jesse Prather

DOMINATOR® 10W-30 Racing Oil

Prather’s use of AMSOIL extends beyond the motor.

He uses Synthetic Manual Transmission and Transaxle Gear Lube in all synchronizer-equipped transmissions. He also uses SEVERE GEAR® Synthetic Gear Lube in the differentials and some transmissions not equipped with synchros.

As Prather says, wear protection is the key to a good differential fluid, particularly in high-demand racing applications that undergo tremendous pressure. And SEVERE GEAR meets his demands.

“Even up to 300°F (149°C), SEVERE GEAR doesn’t break down; it continues to protect. It can take the heat and it still protects those gears.”

Jesse Prather

New Easy Pack for simple differential oil servicing.

AMSOIL isn’t just for racing

Prather makes sure his customers know just how well AMSOIL performs.

“I tell them it does the best job protecting their engine, period. I’ve been around racing for 40 years, and I tell them it works the best for what we’re doing with these cars.”

“I’ve seen the least amount of wear in the engines and the best protection of any other oil I’ve ever used, and I’ve used a lot over the years.”

Jesse Prather

While Prather has notched plenty of wins on the track, he derives more satisfaction from seeing his customers win.

“I’ve had a customer win a national championship every year for the last multiple years,” he said. “And that really is what drives me to keep pushing.”

As with many AMSOIL users, Prather’s initial positive experience with one AMSOIL product convinced him to try others. He now uses AMSOIL products in everything he owns with an engine.

“I’ve expanded into using AMSOIL in all my engines, from my lawnmowers, to my RV, to my skidsteer, to all my family’s vehicles. I use it exclusively. I don’t have any other oils in my shop,” he said.

And the reason he uses it, as his customers have found out, is that it simply works.

“That’s all that matters to an engine builder. It’s not about being loyal to a certain company – it’s about what works. I trust AMSOIL exclusively with all my racing engines,” said Prather.

Racing Oil vs. Regular Oil: What’s the Difference?

Why not use Racing Oil in my Car If It’s Tougher?

When deciding if racing oil is right for their vehicles, gearheads and other enthusiasts sometimes offer this line of reasoning:

  1. Racing engines are more severe than my engine
  2. Racing engines use racing oil
  3. Therefore, I should use racing oil in my vehicle for best protection

It’s true that your average racing engine creates operating conditions more severe than the average passenger car engine.

However, that’s not to say that modern engines aren’t tough on oil.

The turbocharged, direct-injection engines in modern vehicles generate increased heat and contaminants compared to their predecessors. Motor oil bears the brunt of the added stress.

That’s why industry motor-oil specifications keep growing tougher and automakers are increasingly recommending synthetic oils to meet these strict performance specs.

Scott Douglas AMSOIL racing truck

Scott Douglas AMSOIL race truck

Should I use racing oil in my car?

Racing, however, is a whole different animal.

The powerful, modified engines in racing vehicles produce extreme heat and pressures your average car or truck simply will never see.

A 900-hp Pro 4×4 race truck can produce engine temperatures in excess of 300ºF (149ºC). Engine temperatures in a typical passenger car/light truck fall somewhere between 195ºF and 220ºF (90ºC – 104ºC).

The difference is even more striking when you consider that the rate of motor oil oxidation (chemical breakdown) doubles for every 18ºF (10ºC) increase in oil temperature.

The tremendous shearing forces the oil bears as it’s squeezed between the interfaces of the pistons/rings and cam lobes/lifters pose another problem. The pressure can tear apart the molecular structure of the oil, reducing its viscosity and film strength.

Racing oil has to be formulated differently to protect these demanding engines. Even so, it doesn’t mean you should order a case of AMSOIL DOMINATOR®  10w-30 Synthetic Racing Oil for your car.

DOMINATOR® 15W-50 Racing Oil

Racing oil is changed more often

So, why not use racing oil in your daily driver? For starters, racing oils are changed frequently.

Most professionals change oil every couple races, if not more frequently. For that reason, racing oils are formulated with a lower total base number (TBN) than passenger car motor oils.

TBN is a measure of the oil’s detergency properties and its ability to neutralize acidic byproducts. Oils with longer drain intervals have higher TBNs.

AMSOIL Signature Series Synthetic Motor Oil features a TBN of 12.5 to enable its 25,000-mile/one-year drain interval.

In contrast, DOMINATOR Synthetic Racing Oil has a TBN of 8 since we recommend changing it more often. As great as it performs on the track, DOMINATOR is not what you want in your engine when you’re driving thousands of miles and several months between oil changes.

Regular motor oil is designed to provide additional benefits

You also want to use an oil in your daily driver that excels in several performance areas:

Motor oil additives produce many of these benefits. For example, anti-oxidant additives fight increased heat and extend oil service life.

Anti-wear additives interact with the metal surfaces of engine parts and guard against metal-to-metal contact.

Many additives form layers on metal surfaces. That being the case, they compete with each other for space, so to speak, like pigs competing for room at the trough.

Racing oils are often formulated with a heavy dose of friction modifiers to add lubricity for maximum horsepower and torque.

The boosted level of additives meant to increase protection and performance during a race doesn’t leave room in the formulation for additives found in passenger car motor oils that help maximize fuel economy, fight corrosion or improve cold-weather protection.

In effect, the ravenous pigs at the trough leave no room for their brethren, resulting in a less well-rounded formulation.

Bottom line: use regular motor oil in your daily driver

Achieving the tasks of a passenger car motor oil requires a finely balanced formulation. Too much or too little performance in one area can negatively affect other areas – and the oil’s overall protection and performance. The list of tasks required of a racing oil, however, is much shorter.

The right tool for the right job is an axiom with which you’re familiar. The same holds for motor oil. It’s best to leave racing oil to competition engines and use a properly formulated passenger car motor oil for your daily vehicle.

How Engine Sludge Forms. And How To Prevent It.

Engine Sludge Is Easily Avoidable

Engine sludge.

It’s a back gelatinous substance that wreaks havoc in engines. And long before the engine’s demise, engine sludge can foul engine sensors and interfere with performance. Some mechanics call it the “black death.”

How does motor oil, which is fluid, become a semi-solid paste or gel inside an engine?

Here’s what we’ll cover:

  • How engine sludge forms
  • The effects of engine sludge
  • Synthetic oil helps prevent engine sludge
  • High-quality additives fight engine sludge
  • Severe service invites engine sludge

How engine sludge forms

Engine sludge is the result of a series of chemical reactions.

The lubricant degrades as it is exposed to oxygen and elevated temperatures. The higher the temperature, the more rapid the rate of degradation. In fact, every 18°F (10°C) increase in temperature doubles the rate of oxidation.
Many people still believe any oil is fine as long as you change it often but 95% of the brands out there do not address that inch of protection when you really need it!! We’ve all had issues where the engine is overheating or some situation where adequate lubrication isn’t available. AMSOIL offers 75% more protection when you need it and our diesel oils offer 6X more protection than required by industry testing.

The by-products of this reaction form highly reactive compounds that further degrade the lubricant. Their by-products react with other contaminants, forming organic acids and high-molecular-weight polymeric products. These products further react, forming the insoluble product known more commonly as sludge.

What begins as a thin film of lacquer or varnish deposits on hot or cold metal surfaces and bakes into an expensive mess.

The effects of engine sludge

Sludge can block the oil passages and oil-pump pick-up screen, resulting in oil starvation. Often, the negative effects are cumulative rather than sudden.

Many engines with variable valve timing (VVT) use oil-pressure-operated mechanical devices to change valve timing, duration and lift. Sludge can plug the solenoid screen or oil gallies and impact the operation of VVT mechanisms, eventually leading to a costly repair bill. Sludge reduces efficiency and increases time and money spent on maintenance.

Who doesn’t want a cooler engine? Sludge, even the early stages prevents the engine from dispersing heat efficiently. Why would you risk a Group III “synthetic” which does leave deposits adding to or resulting into an engine which struggles to exhaust heat.

Synthetic oil helps prevent engine sludge

Fortunately, sludge and varnish deposits are something oil manufacturers can control. Using thermally stable synthetic base oils reduces the rate of degradation (oxidation). (Yes – and that is “Real 100%” Synthetics – not the ones they currently call “Fully”..

Anti-oxidant additives help reduce the rate of degradation as well. One of the most widely used is zinc dithiophosphate. Not only is it an excellent oxidation inhibitor, it is an outstanding anti-wear additive as well.

High-quality additives fight engine sludge

We can further address many of the issues occurring after the initial oxidation stage.

Additives, such as detergents and dispersants, are commonly part of motor oil formulation. They help promote the suspension of contaminants within the oil and keep them from agglomerating.

Detergents, which are also alkaline in nature, assist in neutralizing acids generated in the sludge-building process. Anti-oxidant, dispersant and detergent additives are consumed during use.

To achieve maximum life expectancy, use an oil with high concentrations of anti-oxidant, dispersant and detergent additives.

AMSOIL Signature Series Synthetic Motor Oil, for example, has 50 percent more detergents* to help keep oil passages clean and promote oil circulation. It provides 90 percent better protection against sludge**.

Signature Series Synthetic Motor Oil was subjected to the Sequence VG test to measure its ability to prevent sludge. Signature Series produced an oil pick-up tube screen virtually free from sludge. Our unique combination of detergents and high-quality base oils control oxidation and sludge to keep engines clean and efficient.

PDF of the test where AMSOIL has this done (Southwest Research)

AMSOIL Signature Series virtually prevented engine sludge on this oil pick-up screen.

Buy Signature Series

Severe service invites engine sludge

Equipment operating conditions also influence the likelihood of sludge or varnish issues.

Stop-and-go driving, frequent/long-term idling and operation in excessively hot or cold weather can increase the likelihood of sludge and varnish, especially if using more volatile conventional oils. If sludge has already formed, you can use an engine flush to clean sludge from your engine.

Interestingly, most auto manufacturers note in their owner’s manual that operation under any of the above conditions is considered severe service and requires more frequent oil changes.

From a mechanical standpoint, things like adding too much oil to the oil sump, antifreeze contamination, excessive soot loading, excessive oil foaming, poor engine-combustion efficiency, excessive blow-by and emission-control-system issues can all lead to the formation of sludge and varnish.

By practicing good maintenance and using properly formulated, premium synthetic lubricants, like AMSOIL synthetic motor oil, your vehicle won’t succumb to the “black death.”

Taking it a step further which many of our customers do – to make sure your vehicle is always running in peak condition one thing is to have your oil analyzed. I do it not so much to see how the oil is doing but to measure what may be going on in the engine to deplete detergents or to test for any out of typical wear levels, fuel in the crankcase, and to see if the viscosity is still on par.  Oil analysis kits are easy to use especially when you have the dipstick extraction pump.

*vs. AMSOIL OE Motor Oil
**Based on independent testing of AMSOIL Signature Series 5W-30 in the ASTM D6593 engine test for oil screen plugging as required by the API SN PLUS specification.