Skip to main content

How To Fix Motorcycle Engine Pre-Detonation

 

How To Fix Motorcycle Engine Knock

Your bike can automatically detune its engine, but there’s an easy fix.

_by Eddie Hilgendorfen |May 10, 2023

Many modern motorcycles are designed to compensate for low-octane gasoline in an attempt to prevent motorcycle engine knocking. Unfortunately, the technology involved may also cause reduced performance, rough idle or lack of throttle response, making for a less than stellar ride experience. Fortunately, we can help you understand the root cause of this problem, and offer an inexpensive, quick and easy solution.

What is engine knocking?

Engine knock  or pre-detonation is caused by an improper detonation within the engine, which happens when fuel ignites outside of a timed ignition from the spark plug. In the race to improve fuel economy, modern high-performance engines have increased compression ratios, which also inherently increases the chance of pre-ignition detonation.

Octane measures gasoline performance against pre-ignition, detonation and the resulting engine knocking or pinging. The three most common octane ratings are:

  • Anti-Knock Index (AKI)
    The rating typically displayed on North American gas station pumps as the average of the fuel’s RON and MON octane ratings (R+M)/2.
  • Research Octane Number (RON)
    This rating is determined by testing fuel using a variable compression ratio under controlled conditions and is the most common industry rating worldwide. When comparing octane ratings, RON is typically higher than the AKI number, so an 87-octane AKI fuel at a typical gas station typically has a RON of 91-92. AMSOIL uses RON when conducting product validation and performance testing.
  • Motor Octane Number (MON)
    MON differs from RON testing by using a preheated fuel mixture, variable ignition timing and a higher engine speed to increase ignition stresses on the fuel. Though the tests are unrelated, MON results are typically 8 to 12 octane lower than RON.

Causes for loss of power and efficiency

Low-octane gasoline is more susceptible to uncontrolled and early ignition in the combustion chamber, so the higher the octane, the more compression the fuel can withstand before igniting. Pre-ignition robs the engine of power, can cause a noticeable knocking or pinging sound, and if left unchecked, can even cause catastrophic piston or cylinder damage.

This is why I decelerate (turning off the cruise control) when driving up or climbing steep hills and I also sometimes turn off the air conditioning. Also doing this you can see A decent increase in your fuel efficiency

High stress combined with lightweight design caused this dirt bike piston to fail. Dude was in first place so missed out on the cash prize.

Reduced performance.

Many modern motorcycle engines are equipped with a knock sensor. Pre-Detonation causes this sensor to adjust timing to compensating for low-octane gasoline. Unfortunately, adjusting the timing usually results in a noticeable decrease in performance, rough idling and lack of throttle response. When timing changes are done correctly, most riders shouldn’t even be aware that the performance has been reduced, but it’s easy to resolve this performance problem.

Boosting octane To Reduce Knock

The risk of engine knock can be reduced by:

  • retarding ignition timing
  • enriching the air-fuel ratio
  • reducing cylinder pressure or engine load
  • reducing the throttle or boost especially as you climb a hill
  • increasing the octane rating of the fuel
  • Engine work – lower compression

Therefore, the performance degradation caused by reduced engine timing can most easily be eliminated by increasing the fuel’s octane number. AMSOIL Motorcycle Octane Boost increases octane up to three numbers. On a bike that can be significant! This helps to eliminate motorcycle engine knocking and maximize power, performance and fuel efficiency. We get a LOT of feedback on this. Check out the product reviews.

 

 

 

 

ILSAC GF-6, API SP & dexos: Making Sense of New Oil Specs.

ILSAC GF-6, API SP & dexos: New Oil Specifications

As engine-operating conditions grow more severe, so do the demands placed on your motor oil. Hence the need for updated oil specifications, like ILSAC GF-6, API SP and GM dexos1 Gen 2.

New engine hardware such as turbochargers, direct injection and variable valve timing (VVT) place increased stress on your engine oil. This, in turn, has led to the introduction of more strict more oil specifications.

Here’s what we’re going to cover:

  • How strict fuel-economy standards increase engine stress
  • What is LSPI (low-speed pre-ignition)?
  • How motor oil helps prevent LSPI
  • ILSAC GF-6, API SP and GM dexos
  • Do AMSOIL synthetic motor oils meet GM dexos, ILSAC GF-6 and API SP specs?

 

video
play-sharp-fill

Improved fuel economy

Corporate Average Fuel Economy (CAFE) standards require a fleet-wide average of about 40 mpg by 2026 in the United States.

To meet these requirements the automotive industry has focused on smaller, more fuel-efficient engines. In fact, most new vehicles now feature gasoline direct-injection (GDI), a turbocharger or both (T-GDI).

Severe operating conditions

Smaller, more-efficient engines that make the power and torque of higher-displacement engines undergo more severe operating conditions that can lead to…

  • Severe engine knock, also called low-speed pre-ignition (LSPI)
  • Increased engine temperatures
  • Compromised fuel injectors
  • Increased wear and deposits if the oil isn’t up to snuff

The biggest motor-oil-related challenge on the horizon is LSPI, which can destroy pistons and connecting rods.

LSPI can cause cracked pistons and rods

LSPI is the spontaneous ignition of the fuel/air mixture before spark-triggered ignition.

It is another version of pre-ignition. Pre-ignition (engine knock) has been around since the beginning of internal combustion engines.

LSPI, however, occurs under low-speed, high-torque conditions, such as taking off from a stoplight in T-GDI engines.

This scenario can create conditions where the fuel/air ignites too early in the combustion cycle, throwing off the engine’s timing.

The expanding combustion charge collides with the piston as it’s moving up the cylinder, potentially destroying the pistons or connecting rods.

Oil can help prevent LSPI

Experts suggest the cause is due in part to oil/fuel droplets or deposits in the cylinder igniting randomly. The droplets and deposits contain enough heat to ignite the air/fuel mixture before spark-triggered ignition.

Oil formulation can play a role in reducing LSPI.

Certain motor oil ingredients can promote LSPI, while others can help reduce it. It’s tempting to think, “Well, dump a bunch of ingredients into your formulations that help reduce LSPI.” But some ingredients that help reduce LSPI have been limited over the years in motor oil formulations for other reasons.

It truly is a scientific balancing act confronting oil formulators. It’s no easy task to formulate motor oils that deliver excellent wear protection, resist the increased heat of turbocharged engines, prevent deposits, act as a hydraulic fluid and, now, combat LSPI.

The performance of the entire formulation – not just one or two ingredients – is what counts.

ILSAC GF-6, API SP and GM dexos

Next-generation motor oils need to pass an LSPI test to meet these new demands.

General Motors was first out of the gate and required oils to pass its own LSPI test. Its GM dexos1 Gen 2 specification took effect Aug. 31, 2017.

The latest American Petroleum Institute (API) specification, API SP, took effect in May 2020. As did ILSAC GF-6, the latest spec from the International Lubricants Standardization and Approval Committee. For the most part, it mirrors API specifications.

ILSAC has set a new precedent in the passenger-car motor oil market by splitting its specification into two parts. One of the main differences between the two specifications is compatibility.

See the chart below. Both versions focus on wear protection, prevention of LSPI and improved engine cleanliness. However, GF-6B features a more stringent fuel economy test.

Engine oils can easily be identified as ILSAC GF-6A or 6B by the API emblem on the front label of the packaging. A shield represents the GF-6B specification, while the traditional starburst indicates a GF-6A product.

Both ILSAC specifications meet the industry-standard API SP specification which is most commonly found in owners’ manuals.

Relax…for now

For now, you don’t have to worry too much about LSPI.

Your vehicle’s computer is programmed to avoid operating conditions that lead to LSPI. But, operating your engine under those conditions does promise fuel economy gains.

AMSOIL meets the latest specs

AMSOIL synthetic motor oils meet or exceed the latest industry standards, including ILSAC GF-6, API SP and GM dexos1 Gen 2.

You can safely use our synthetic motor oils in engines that call for those specifications.

In fact, AMSOIL achieved 100 percent protection against LSPI in the engine test required by GM’s dexos1 Gen 2 specification.*

*Based on independent testing of Signature Series 5W-30, XL 5W-30 and OE 5W-30 in the LSPI engine test as required for the GM dexos1® Gen 2 specification.