Skip to main content

Why is there this hard to Flush Slime in my Radiator?

Why is there Sludge or Slime in my Radiator?

Cooling-system issues account for nearly 40 percent of engine failures. Clearly, it pays to take care of your vehicle’s cooling system.

Sludge/slime are one of the common symptoms of larger problems. Left unchecked, it’ll plug the radiator, heater core or fluid passages, resulting in overheating and expensive repairs.

What causes sludge/slime and what can you do about it?

• Additives dropping out – coolant consists of a base (typically ethylene glycol or propylene glycol) mixed with additives and water. The base is primarily responsible for providing freeze and boil-over protection. The additives guard against corrosion, cavitation and scaling. Mixing of incompatible coolants can cause the additives to “drop out” of the solution and form sludge or slime.

• Contaminated coolant – a bad head gasket or cracked cylinder head can allow oil and coolant to mix, resulting in sludge. In vehicles with automatic transmissions, the engine-cooling system also cools the transmission. A breach in the system can contaminate coolant with transmission fluid.

• Corrosion – occurs when an imbalanced coolant chemically reacts with metallic surfaces, forming reddish deposits that can appear as sludge or slime.

Low-quality coolants can lead to cooling-system corrosion.

The only way to definitively identify what’s causing sludge/slime in your radiator is to perform fluid analysis. The report can identify oil, transmission fluid or other contaminants in the coolant. Fix any mechanical defects and flush the cooling system. Refill with a high-quality antifreeze/coolant.

What kind of coolant should I use?

Let’s start with what kind you should avoid.

You’re no doubt familiar with the conventional “green” coolants found at most retailers due to their low price. They contain inorganic salts, such as nitrites, phosphates and silicates.

Inorganic salts deplete quickly – typically in two years or less – and are on the environmental watch list. Once depleted, they are the source of common cooling-system problems, like scale deposits and sludge/slime.

Low-cost “green” coolants are the source of several problems, such as sludge/slime and scale deposits.

For these reasons, most vehicle manufacturers have moved away from inorganic salts for newer vehicles.

And so should you.

Instead, use a high-quality coolant that uses organic-acid technology (known as OATs). OATS coolants are much more robust and longer-lasting. They virtually eliminate drop-out, scaling and compatibility issues inherent to inorganic salts. This type of coolant can be used in a wide variety of applications, even mixing with other coolants as a top-off.

AMSOIL Antifreeze/Coolants

AMSOIL offers three coolants, all of which offer a unique blend of organic acids. We use di-acid technology, which means both ends of the organic acid are active. This makes them work faster and form stronger bonds for enhanced protection.

How Engine Wear & Deposits Kill Horsepower

Common Engine Wear & Deposits Will Kill Horsepower

Most people equate engine wear and deposits with a sudden, catastrophic engine failure that leaves you stranded alongside the road. In reality, wear and deposits are more likely to erode engine power and efficiency over time. Here’s how it works and what you can do about it.

Engine compression = power

For your engine to produce maximum power, the combustion chamber must seal completely during the compression and combustion strokes. Wear and deposits can prevent the valves or piston rings from sealing, allowing pressurized gases to escape the combustion chamber and take potential engine power with them.

To illustrate, imagine using a hydraulic floor jack. Pumping the handle will raise the vehicle as long as the release valve is tightly seated and doesn’t leak. A poorly sealed release valve, however, allows pressure to escape, causing the vehicle to sink to the ground no matter how much you pump the jack handle.

The same principle applies inside your engine. If some of the pressure created during the compression and combustion strokes is lost due to valves and piston rings that don’t seal completely, the engine will create less power.

engine wear identified

Wear & deposits reduce compression

Over time, deposits or valve wear can prevent the valves from closing completely, interfering with a good seal. Wear can also interfere with proper valve operation, disrupting optimum fuel/air flow.

If the piston rings do not seal tightly against the cylinder wall, pressurized combustion gases can escape past the rings and enter the crankcase, taking potential power with it.

Worn or stuck piston rings produce the same effect. The rings are designed to move freely in their grooves and press tightly against the cylinder wall. They should form a seal that prevents fuel/air from escaping. Ring wear can interfere with formation of a tight seal. Likewise, deposit buildup can cause the rings to stick in their grooves, also preventing a good seal. As a result, some fuel/air escapes the combustion chamber during compression, reducing power. On the combustion stroke, pressurized gases can blow by the rings and travel down the cylinder wall and into the oil sump, taking potential power with them. This is what’s meant when someone says an engine has lost compression.

(Check out our 5 Ways to Boost Horsepower for Under $500)

AMSOIL Signature Series helps prevent the problem

AMSOIL Signature Series Synthetic Motor Oil provides…

  • 75 percent more engine protection against horsepower loss and wear*
  • 90% better protection against sludge **

Its outstanding performance helps prevent deposits and wear that rob engines of horsepower, helping preserve that like-new feeling you crave when driving.

FIND AMSOIL PRODUCTS FOR MY VEHICLE

*Based on independent testing of AMSOIL Signature Series 0W-20, in ASTM D6891 as required by the API SN specification.

**Based on independent testing of AMSOIL Signature Series 5W-30 in the ASTM D6593 engine test for oil screen plugging as required by the API SN specification.