Skip to main content

How to Fight Ethanol Problems in Small Engines

How to Fight Ethanol Problems in Small Engines

 

In 2005, Congress instituted a new renewable fuel standard that you didn’t get to vote on. In response, refiners made a wholesale switch, removing methyl tertiary butyl ether (MTBE) and blending fuel with ethanol. Ethanol helps reduce petroleum use and greenhouse gas (GHG) emissions, well in special engines made for ethanol only – but you’re not suppose to know that..  (even though you end up using more fuel to make up for the losses). Derived from corn (Round-up ready which destroys our health), ethanol supports U.S. agriculture (as long as they don’t ask questions and buy the seed they are forced to) and helps support energy independence. (as if allowing private railways wouldn’t but competing with AMTRAK is against the law currently).

Ethanol, however, can cause a number of problems, particularly in small engines. These problems center on the two following issues:

1) Dissolving plastics and creating deposits

Ethanol is an excellent solvent and drying agent that dissolves old gum and varnish deposits from the gas tank and fuel lines. However, it can also dissolve plastic and create deposits. Honda states that the dissolved material can clog filters or pass through and leave deposits on fuel injectors, fuel pumps, fuel-pressure regulators, carburetor jets, intake tracts, valves and valve guides.

Small-engine manufacturer ECHO agrees, stating in its warranty that these deposits can lead to poor engine performance; loss of power; overheating; fuel vapor lock; improper clutch engagement caused by increased engine idle speeds, which allows cutting attachments to turn while the unit is idling; and premature deterioration of fuel lines, gaskets, carburetors and other engine components.

2) Ethanol and water don’t mix

Small engine manufactures have spent considerable time studying the relationship between ethanol and water.

The white flaky deposits in this carburetor are attributed to ethanol.

ECHO warns that ethanol will absorb a small amount of moisture and stay in suspension within the gasoline for a while. However, the ethanol will only absorb up to ¾ of an ounce of water in a gallon of gas before it reaches its saturation point. Once the ethanol has absorbed enough moisture to reach its saturation point, phase separation occurs. Phase separation means the ethanol and absorbed water drop to the bottom of the fuel container since it is heavier than the gas and oil, leaving the gasoline and oil mix to float on top of the tank. Most operators never notice water in the can when they refuel their equipment. The end result is often a carburetor ruined with rust and corrosion. These expensive repairs can cost more than $75 and are not typically covered by warranty.

Stihl stresses that the layer of gasoline left floating on top has a lower octane level than the original ethanol-gasoline blend, which can result in unstable engine operation, power loss and major engine failures.

Ethanol’s affinity for water explains why so many ethanol-related problems surface in the marine industry. In fact, some marina personnel say up to 65 percent of their service orders are attributable to fuel-system problems.

Combating ethanol problems

Although some fuel additives on the market claim to reverse the effects of phase separation, there’s no way to reintegrate gasoline and ethanol once they’ve separated. Instead, it’s best to prevent it.

One solution is to use non-oxygenated, ethanol-free gas in your small engines. It costs a little more, but it eliminates problems
associated with ethanol. Another solution is to treat every tank of fuel and container of gas with AMSOIL Quickshot. It helps keep water molecules dispersed in the fuel to prevent phase separation. It also cleans varnish, gums and insoluble debris while stabilizing fuel during short-term storage.

Quickshot was tested in fuel containing 10 percent ethanol. Controlled plugging of injectors showed a 70 percent flow improvement, while oxidation stability improved 44 percent over untreated fuel.

Regardless whether you’re pro- or anti-ethanol, we can all agree on the importance of taking care of our small engines.

Solve ethanol issues before they arise

Prevent Ethanol Issues Now

The fuel some love to hate isn’t the problem – letting gasoline sit too long is the real problem.

Len Groom | TECHNICAL PRODUCT MANAGER

How did an alternative fuel made mostly from corn grown in the Midwest become a political lightning rod?

Whatever the reason, ethanol is always a controversial topic. Some love it, citing its ability to reduce our dependence on foreign oil while supporting American jobs. Some hate it, saying it reduces fuel economy and wastes farmland that could be used to grow food.

I’ll leave that debate to someone else. Instead, I want to talk about the effect ethanol can have on fuel-system components, especially in powersports and lawn & garden equipment – and what you can do to avoid those problems.

What is ethanol?

But first, some background info. Ethanol is an alcohol fuel derived from plant materials, such as corn, barley or wheat. It’s mixed with gasoline at different ratios to produce the fuel you buy at the pump. Most of us are familiar with E10, which is gasoline that contains up to 10 percent ethanol. Today, E15 is becoming more common. And owners of flex-fuel vehicles designed to run on increased concentrations of ethanol can opt for E85.

The upside of ethanol

Years ago, lead was added to gasoline to, among other things, boost octane rating and help prevent engine knock. It turned out lead poisoned catalytic converters and harmed the environment, so it was replaced by methyl tert-butyl ether (MTBE). However, MTBE was shown to damage the environment if leaked or spilled. Today, ethanol has replaced MTBE as a more environmentally friendly means of boosting octane.

Fuel-system problems

That brings us to a major knock on ethanol – it’s propensity to degrade rubber and plastic fuel hoses and carburetor components. Ethanol can cause gaskets and fuel lines to harden, crack and then leak. It can also cause aluminum and brass fuel-system components to corrode and develop a white, flaky residue that clogs fuel passages. Some marina personnel I’ve talked to say up to 65 percent of their repair orders are attributed to fuel-system problems.

PHASE SEPARATION

Ethanol isn’t to blame

While ethanol has become a popular scapegoat for mechanics, especially in the marine industry, it isn’t the enemy – time is the enemy. Why do ethanolrelated problems affect powersports and lawn & garden equipment more than your car or truck? Because your boat or lawnmower can sit idle for weeks or even months. During that time, the fuel can absorb moisture since ethanol has an affinity for water. That’s why ethanolrelated problems are so common in marine applications. Water can break the molecular bond between gasoline and ethanol, causing the water/ethanol mixture to separate from the gasoline and fall to the bottom of the tank. This is known as phase separation, and you can see an example of it in the image above.

Phase separation causes a couple problems. The engine can draw the ethanol/ water mixture into the carburetor or injectors, leading to a lean-burn situation that can increase heat and damage the engine. In addition, the gasoline left behind no longer offers adequate resistance to engine knock since the ethanol that provides the increased octane the engine needs has separated from the gasoline. Burning low-octane gas can cause damage due to engine knock, especially in two-stroke engines. Finally, if your boat, lawnmower or other piece of equipment sits unused, the water/ethanol mixture can slowly corrode aluminum and brass fuel-system components, not to mention rubber and plastic fuel lines and gaskets. Eventually those components fail and require replacement.

Driving your car or truck almost every day doesn’t allow enough time for phase separation to occur, which is why we don’t see these issues nearly as often in the passenger car/light-truck market.

Prevention is the best solution

Although some fuel additives on the market claim to reverse the effects of phase separation, there’s no way to reintegrate gasoline and ethanol once they’ve separated. Instead, it’s best to prevent it.

One solution is to use non-oxygenated, ethanol-free gas in your powersports and lawn & garden equipment. It costs a little more, but it eliminates problems associated with ethanol. Another solution is to treat every tank of fuel and container of gas with AMSOIL Quickshot®. It helps keep water molecules dispersed in the fuel to prevent phase separation. It also cleans varnish, gums and insoluble debris while stabilizing fuel during short-term storage.

It’s a great way to avoid ethanol-related problems and keep your equipment protected. There’s nothing controversial about that.