Skip to main content

ILSAC GF-6, API SP & dexos: Making Sense of New Oil Specs.

ILSAC GF-6, API SP & dexos: New Oil Specifications

As engine-operating conditions grow more severe, so do the demands placed on your motor oil. Hence the need for updated oil specifications, like ILSAC GF-6, API SP and GM dexos1 Gen 2.

New engine hardware such as turbochargers, direct injection and variable valve timing (VVT) place increased stress on your engine oil. This, in turn, has led to the introduction of more strict more oil specifications.

Here’s what we’re going to cover:

  • How strict fuel-economy standards increase engine stress
  • What is LSPI (low-speed pre-ignition)?
  • How motor oil helps prevent LSPI
  • ILSAC GF-6, API SP and GM dexos
  • Do AMSOIL synthetic motor oils meet GM dexos, ILSAC GF-6 and API SP specs?

 

video
play-sharp-fill

Improved fuel economy

Corporate Average Fuel Economy (CAFE) standards require a fleet-wide average of about 40 mpg by 2026 in the United States.

To meet these requirements the automotive industry has focused on smaller, more fuel-efficient engines. In fact, most new vehicles now feature gasoline direct-injection (GDI), a turbocharger or both (T-GDI).

Severe operating conditions

Smaller, more-efficient engines that make the power and torque of higher-displacement engines undergo more severe operating conditions that can lead to…

  • Severe engine knock, also called low-speed pre-ignition (LSPI)
  • Increased engine temperatures
  • Compromised fuel injectors
  • Increased wear and deposits if the oil isn’t up to snuff

The biggest motor-oil-related challenge on the horizon is LSPI, which can destroy pistons and connecting rods.

LSPI can cause cracked pistons and rods

LSPI is the spontaneous ignition of the fuel/air mixture before spark-triggered ignition.

It is another version of pre-ignition. Pre-ignition (engine knock) has been around since the beginning of internal combustion engines.

LSPI, however, occurs under low-speed, high-torque conditions, such as taking off from a stoplight in T-GDI engines.

This scenario can create conditions where the fuel/air ignites too early in the combustion cycle, throwing off the engine’s timing.

The expanding combustion charge collides with the piston as it’s moving up the cylinder, potentially destroying the pistons or connecting rods.

Oil can help prevent LSPI

Experts suggest the cause is due in part to oil/fuel droplets or deposits in the cylinder igniting randomly. The droplets and deposits contain enough heat to ignite the air/fuel mixture before spark-triggered ignition.

Oil formulation can play a role in reducing LSPI.

Certain motor oil ingredients can promote LSPI, while others can help reduce it. It’s tempting to think, “Well, dump a bunch of ingredients into your formulations that help reduce LSPI.” But some ingredients that help reduce LSPI have been limited over the years in motor oil formulations for other reasons.

It truly is a scientific balancing act confronting oil formulators. It’s no easy task to formulate motor oils that deliver excellent wear protection, resist the increased heat of turbocharged engines, prevent deposits, act as a hydraulic fluid and, now, combat LSPI.

The performance of the entire formulation – not just one or two ingredients – is what counts.

ILSAC GF-6, API SP and GM dexos

Next-generation motor oils need to pass an LSPI test to meet these new demands.

General Motors was first out of the gate and required oils to pass its own LSPI test. Its GM dexos1 Gen 2 specification took effect Aug. 31, 2017.

The latest American Petroleum Institute (API) specification, API SP, took effect in May 2020. As did ILSAC GF-6, the latest spec from the International Lubricants Standardization and Approval Committee. For the most part, it mirrors API specifications.

ILSAC has set a new precedent in the passenger-car motor oil market by splitting its specification into two parts. One of the main differences between the two specifications is compatibility.

See the chart below. Both versions focus on wear protection, prevention of LSPI and improved engine cleanliness. However, GF-6B features a more stringent fuel economy test.

Engine oils can easily be identified as ILSAC GF-6A or 6B by the API emblem on the front label of the packaging. A shield represents the GF-6B specification, while the traditional starburst indicates a GF-6A product.

Both ILSAC specifications meet the industry-standard API SP specification which is most commonly found in owners’ manuals.

Relax…for now

For now, you don’t have to worry too much about LSPI.

Your vehicle’s computer is programmed to avoid operating conditions that lead to LSPI. But, operating your engine under those conditions does promise fuel economy gains.

AMSOIL meets the latest specs

AMSOIL synthetic motor oils meet or exceed the latest industry standards, including ILSAC GF-6, API SP and GM dexos1 Gen 2.

You can safely use our synthetic motor oils in engines that call for those specifications.

In fact, AMSOIL achieved 100 percent protection against LSPI in the engine test required by GM’s dexos1 Gen 2 specification.*

*Based on independent testing of Signature Series 5W-30, XL 5W-30 and OE 5W-30 in the LSPI engine test as required for the GM dexos1® Gen 2 specification.

Do Coolant Additives Work?

Do Coolant Additives Work?

Store shelves contain several coolant additives that promise to reduce engine heat, control overheating and fight corrosion.

Do coolant additives work? And, if so, are they necessary?

It’s tough to top good ‘ol H2O

First of all, why use coolant additives in the first place?

Straight water is the best coolant one could use. It absorbs and transfers heat better than any other liquid. So, why not just pour purified water into your coolant system and call it done? 

The answer is obvious for those of us who drive in snow six months a year and those of you who face triple-digit temperatures all summer.

Water freezes at 32°F (0°C) and boils at 212°F (100°C).

Clearly, coolant formulators must add something to antifreeze & coolant to expand its application to areas where the weather isn’t perfect 365 days per year. Otherwise your engine would freeze in winter and your cooling system would overheat in summer.

Corrosion control

Not only that, but water corrodes metal.

Running straight water in your vehicle’s cooling system would eventually lead to scale buildup that would plug the heater core and ruin the system.  

It can also hasten corrosion in aluminum components, like radiators and cylinder heads, at an alarming rate. Corrosion can eat through an aluminum radiator until coolant leaks on the ground.

At the very least, drivers in the perfect climate still need to add corrosion inhibitors to straight water to properly cool an engine.

In fact, many racers do this with good results; racetracks typically don’t allow antifreeze & coolant since leaks are difficult to clean up and make the track slippery.

A good antifreeze & coolant hits the mark

A high-quality antifreeze & coolant contains the chemistry needed to deliver protection against freezing, boil-over and corrosion.

A word of caution, however: Avoid the conventional “green” coolants readily found at parts stores and other retailers. 

They contain inorganic salts (phosphate, nitrate, nitrite, silicate, borate, amine), which are responsible for almost all cooling-system scaling problems.

Plus, they deplete quickly, often in two years or less, and can lead to sludge or slime in your radiator, which clog passages and create all sorts of problems.

AMSOIL antifreeze/coolants, on the other hand, deliver durable, long-lasting cooling-system protection.

So, why use coolant additives?

If a good antifreeze & coolant works so well, why bother with coolant additives that promise reduced engine temperatures and added corrosion resistance?

Because racers, competitors and enthusiasts want every advantage they can get to enhance engine performance. And a good coolant additive can provide that edge. 

Reduced engine temperatures

An engine has a temperature “sweet spot” in which it produces maximum power and efficiency. Excessive heat reduces efficiency. It can cause metal parts to expand too much and contact each other, causing wear.

Competitors have a big incentive to tame extreme engine temperatures to protect their expensive engines and maximize their chances to win.

A good coolant additive can help by reducing the surface tension of water and allowing it to more efficiently absorb and transfer heat from the engine.

What are surfactants?

Coolant additives use chemicals called surfactants.

When water is agitated or heated, surface tension holds bubbles together before they burst. Since bubbles are filled with air, they reduce the water’s heat-transfer ability.

Imagine thousands of bubbles in the coolant passages of your engine as it runs. Eliminating these bubbles will allow the water to more closely contact metal, increasing its ability to absorb heat, thereby reducing operating temperatures and increasing efficiency.

Surfactants reduce the water and antifreeze’s surface tension so it can more effectively absorb and transfer heat from the engine.  

Many leading coolant additives, however, contain only one surfactant, limiting their temperature ranges and effectiveness.

AMSOIL DOMINATOR Coolant Boost uses three surfactants, each designed to operate in a different temperature range to increase liquid-to-metal contact from the time the vehicle starts to the time it reaches operating temperature.

As a result, it reduces engine temperatures up to 25°F (14ºC) in straight-water applications.

This helps racers and competitors achieve maximum efficiency and horsepower.

Faster engine warm up

More efficiently transferring engine heat also helps DOMINATOR Coolant Boost warm the engine up to 54% faster.

Racers appreciate this since they waste less fuel warming their engines.

Motorists in cold climates like it because it boosts driver comfort on cold mornings.

Improved corrosion resistance

DOMINATOR Coolant Boost also delivers outstanding corrosion protection. In industry standard testing, it limited corrosion to the six metals most commonly found in cooling systems (copper, solder, brass, steel, cast iron and cast aluminum), easily passing both tests.

Check out the full results here.

Dominator Coolant Boost