Skip to main content

Do Coolant Additives Work?

Do Coolant Additives Work?

Store shelves contain several coolant additives that promise to reduce engine heat, control overheating and fight corrosion.

Do coolant additives work? And, if so, are they necessary?

It’s tough to top good ‘ol H2O

First of all, why use coolant additives in the first place?

Straight water is the best coolant one could use. It absorbs and transfers heat better than any other liquid. So, why not just pour purified water into your coolant system and call it done? 

The answer is obvious for those of us who drive in snow six months a year and those of you who face triple-digit temperatures all summer.

Water freezes at 32°F (0°C) and boils at 212°F (100°C).

Clearly, coolant formulators must add something to antifreeze & coolant to expand its application to areas where the weather isn’t perfect 365 days per year. Otherwise your engine would freeze in winter and your cooling system would overheat in summer.

Corrosion control

Not only that, but water corrodes metal.

Running straight water in your vehicle’s cooling system would eventually lead to scale buildup that would plug the heater core and ruin the system.  

It can also hasten corrosion in aluminum components, like radiators and cylinder heads, at an alarming rate. Corrosion can eat through an aluminum radiator until coolant leaks on the ground.

At the very least, drivers in the perfect climate still need to add corrosion inhibitors to straight water to properly cool an engine.

In fact, many racers do this with good results; racetracks typically don’t allow antifreeze & coolant since leaks are difficult to clean up and make the track slippery.

A good antifreeze & coolant hits the mark

A high-quality antifreeze & coolant contains the chemistry needed to deliver protection against freezing, boil-over and corrosion.

A word of caution, however: Avoid the conventional “green” coolants readily found at parts stores and other retailers. 

They contain inorganic salts (phosphate, nitrate, nitrite, silicate, borate, amine), which are responsible for almost all cooling-system scaling problems.

Plus, they deplete quickly, often in two years or less, and can lead to sludge or slime in your radiator, which clog passages and create all sorts of problems.

AMSOIL antifreeze/coolants, on the other hand, deliver durable, long-lasting cooling-system protection.

So, why use coolant additives?

If a good antifreeze & coolant works so well, why bother with coolant additives that promise reduced engine temperatures and added corrosion resistance?

Because racers, competitors and enthusiasts want every advantage they can get to enhance engine performance. And a good coolant additive can provide that edge. 

Reduced engine temperatures

An engine has a temperature “sweet spot” in which it produces maximum power and efficiency. Excessive heat reduces efficiency. It can cause metal parts to expand too much and contact each other, causing wear.

Competitors have a big incentive to tame extreme engine temperatures to protect their expensive engines and maximize their chances to win.

A good coolant additive can help by reducing the surface tension of water and allowing it to more efficiently absorb and transfer heat from the engine.

What are surfactants?

Coolant additives use chemicals called surfactants.

When water is agitated or heated, surface tension holds bubbles together before they burst. Since bubbles are filled with air, they reduce the water’s heat-transfer ability.

Imagine thousands of bubbles in the coolant passages of your engine as it runs. Eliminating these bubbles will allow the water to more closely contact metal, increasing its ability to absorb heat, thereby reducing operating temperatures and increasing efficiency.

Surfactants reduce the water and antifreeze’s surface tension so it can more effectively absorb and transfer heat from the engine.  

Many leading coolant additives, however, contain only one surfactant, limiting their temperature ranges and effectiveness.

AMSOIL DOMINATOR Coolant Boost uses three surfactants, each designed to operate in a different temperature range to increase liquid-to-metal contact from the time the vehicle starts to the time it reaches operating temperature.

As a result, it reduces engine temperatures up to 25°F (14ºC) in straight-water applications.

This helps racers and competitors achieve maximum efficiency and horsepower.

Faster engine warm up

More efficiently transferring engine heat also helps DOMINATOR Coolant Boost warm the engine up to 54% faster.

Racers appreciate this since they waste less fuel warming their engines.

Motorists in cold climates like it because it boosts driver comfort on cold mornings.

Improved corrosion resistance

DOMINATOR Coolant Boost also delivers outstanding corrosion protection. In industry standard testing, it limited corrosion to the six metals most commonly found in cooling systems (copper, solder, brass, steel, cast iron and cast aluminum), easily passing both tests.

Check out the full results here.

Dominator Coolant Boost

Should I be Alerted If My Oil Looks Dirty?

What Your Motor Oil Color Means

Color in general shouldn’t indicate any immediate action without an oil analysis test to validate anything out of the ordinary. No, you should not be alerted if your oil looks dirty. Is that dirt? While color could indicate an issue, keep in mind oil that appears ‘bad’ has often been tested as still within it’s usefulness.  Let’s go over the considerations which need to be known.

An object’s color can reveal a lot about its condition. A brown apple? Probably not great to eat. A slice of green bread? Same. What about motor oil color? Can your eyes provide insight into your oil’s suitability to protect your engine?

Does motor oil that’s turned black require changing?

Not necessarily. In this case, the oil’s color is a sign it’s doing its job.

Oil naturally darkens during use for a couple reasons, including heat cycles. During your drive to work, your engine reaches normal operating temperature (typically 195ºF–220ºF [90ºC–104ºC]), heating the motor oil.

Then the oil cools while your car sits in the parking lot. The process repeats as you run errands over lunch and when you return home.

This continual daily exposure to increased heat naturally darkens the oil.

In addition, normal oxidation can darken oil.

Oxidation occurs when oxygen molecules interact with oil molecules and cause chemical breakdown, just like how oxygen causes a cut apple to brown or iron to rust.

Similar is when you sit in one chair all the time and eventually your ass makes it’s own shape in the chair. The chair may be slightly worn but still holds its function.

Soot also causes oil to turn black.

While we associate soot with diesels, today’s direct-injected gasoline engines can produce more soot than older diesels without exhaust-treatment devices. While individual soot particles are too small to cause engine wear, particles can agglomerate into larger wear-causing contaminants that can lead to wear before they lodge in the oil filter.

Just because the oil has darkened doesn’t necessarily mean it’s reached the end of its service life.

Motor oil contains detergent and dispersant additives designed to clean contaminants like soot and prevent them from depositing onto metal surfaces.

Oil that has turned black is an indication the additives are doing their job. You can read more about that here.

What about motor oil that looks like chocolate milk? – Now that bad!!

In this case, motor oil color does reflect performance…and oil that looks like chocolate milk is bad. Very bad.

Water or engine coolant have contaminated the oil, typically due to a head gasket leak.

We all know that water and oil don’t mix. When they combine in your engine, water droplets suspend in the oil and alter its appearance until it looks frothy or like chocolate milk.

The presence of water leads to foam bubbles, which rupture when pulled between engine parts during operation, leaving metal components unprotected against wear.

It also forms sludge, which can clog oil passages and ruin the engine. In this case, see a mechanic as soon as possible.

What if my oil looks or feels thin?

While not related to motor oil color, this is another frequent question we field from motorists.

Don’t take this the wrong way, but in this case go out to the garage and smell your dipstick.

Oil that has lost viscosity is often due to fuel dilution. You can usually smell gasoline or diesel fuel on the dipstick in such cases.

Fuel dilution occurs when gas or diesel wash past the piston rings and contaminate the oil in the sump. It reduces oil viscosity, which reduces the oil’s ability to prevent wear. It also leads to formation of harmful varnish and sludge.

Fuel dilution can occur if you idle your engine excessively or due to a mechanical defect. It’s also common in some modern direct-injected engines.

It’s important to note that no one can precisely measure an oil’s viscosity simply by looking at it or rubbing a little between their fingers.

As Oil ANALYZERS INC. manager Allen Bender likes to ask, “When’s the last time you had your eyes calibrated?”

Oil analysis in the only definitive way to determine the oil’s viscosity and whether it’s lost viscosity due to fuel dilution.

My oil feels gritty? Should I change it?

When checking oil level, some motorists like to rub oil between their fingers to check for particles.

Grit or other contaminants can mean the oil has chemically broken down, but this is unlikely, especially with a top-shelf synthetic oil.

More likely, the oil filter has filled with contaminants and unfiltered oil is bypassing the filter and circulating through the engine.

The filter is designed with a bypass valve to ensure the engine receives oil even if the filter is full.

While dirty oil is preferable to no oil, it’s not a long-term plan for success. In this case, change the oil and filter.

Trust oil analysis, not your eyes

While it’s possible to get a rough idea what’s going on inside your engine due to oil color, appearance or scent, you need to perform oil analysis to find out what’s really going on.

By chemically analyzing a used-oil sample, a qualified lab can tell you if the oil contains excessive wear particles, water contamination, fuel dilution and more. Ultimately, the report will tell you if the oil is suitable for continued use or not.

It’s a cost-effective way to get the most out of your oil change…and your engine. Check out this post to see how to perform oil analysis.