Skip to main content

Solve ethanol issues before they arise

Prevent Ethanol Issues Now

The fuel some love to hate isn’t the problem – letting gasoline sit too long is the real problem.

Len Groom | TECHNICAL PRODUCT MANAGER

How did an alternative fuel made mostly from corn grown in the Midwest become a political lightning rod?

Whatever the reason, ethanol is always a controversial topic. Some love it, citing its ability to reduce our dependence on foreign oil while supporting American jobs. Some hate it, saying it reduces fuel economy and wastes farmland that could be used to grow food.

I’ll leave that debate to someone else. Instead, I want to talk about the effect ethanol can have on fuel-system components, especially in powersports and lawn & garden equipment – and what you can do to avoid those problems.

What is ethanol?

But first, some background info. Ethanol is an alcohol fuel derived from plant materials, such as corn, barley or wheat. It’s mixed with gasoline at different ratios to produce the fuel you buy at the pump. Most of us are familiar with E10, which is gasoline that contains up to 10 percent ethanol. Today, E15 is becoming more common. And owners of flex-fuel vehicles designed to run on increased concentrations of ethanol can opt for E85.

The upside of ethanol

Years ago, lead was added to gasoline to, among other things, boost octane rating and help prevent engine knock. It turned out lead poisoned catalytic converters and harmed the environment, so it was replaced by methyl tert-butyl ether (MTBE). However, MTBE was shown to damage the environment if leaked or spilled. Today, ethanol has replaced MTBE as a more environmentally friendly means of boosting octane.

Fuel-system problems

That brings us to a major knock on ethanol – it’s propensity to degrade rubber and plastic fuel hoses and carburetor components. Ethanol can cause gaskets and fuel lines to harden, crack and then leak. It can also cause aluminum and brass fuel-system components to corrode and develop a white, flaky residue that clogs fuel passages. Some marina personnel I’ve talked to say up to 65 percent of their repair orders are attributed to fuel-system problems.

PHASE SEPARATION

Ethanol isn’t to blame

While ethanol has become a popular scapegoat for mechanics, especially in the marine industry, it isn’t the enemy – time is the enemy. Why do ethanolrelated problems affect powersports and lawn & garden equipment more than your car or truck? Because your boat or lawnmower can sit idle for weeks or even months. During that time, the fuel can absorb moisture since ethanol has an affinity for water. That’s why ethanolrelated problems are so common in marine applications. Water can break the molecular bond between gasoline and ethanol, causing the water/ethanol mixture to separate from the gasoline and fall to the bottom of the tank. This is known as phase separation, and you can see an example of it in the image above.

Phase separation causes a couple problems. The engine can draw the ethanol/ water mixture into the carburetor or injectors, leading to a lean-burn situation that can increase heat and damage the engine. In addition, the gasoline left behind no longer offers adequate resistance to engine knock since the ethanol that provides the increased octane the engine needs has separated from the gasoline. Burning low-octane gas can cause damage due to engine knock, especially in two-stroke engines. Finally, if your boat, lawnmower or other piece of equipment sits unused, the water/ethanol mixture can slowly corrode aluminum and brass fuel-system components, not to mention rubber and plastic fuel lines and gaskets. Eventually those components fail and require replacement.

Driving your car or truck almost every day doesn’t allow enough time for phase separation to occur, which is why we don’t see these issues nearly as often in the passenger car/light-truck market.

Prevention is the best solution

Although some fuel additives on the market claim to reverse the effects of phase separation, there’s no way to reintegrate gasoline and ethanol once they’ve separated. Instead, it’s best to prevent it.

One solution is to use non-oxygenated, ethanol-free gas in your powersports and lawn & garden equipment. It costs a little more, but it eliminates problems associated with ethanol. Another solution is to treat every tank of fuel and container of gas with AMSOIL Quickshot®. It helps keep water molecules dispersed in the fuel to prevent phase separation. It also cleans varnish, gums and insoluble debris while stabilizing fuel during short-term storage.

It’s a great way to avoid ethanol-related problems and keep your equipment protected. There’s nothing controversial about that.

How do we define “severe service”?

How do we define “severe service”?

When pushing our lubricants to their limits, we sometimes find the limits of the test equipment first.

Matt Erickson | TECHNICAL MANAGER – PCLT PRODUCTS AND MECHANICAL R&D

One of my responsibilities here at AMSOIL is to help develop tests in our mechanical lab designed to push lubricants to their limits, both ours and those of our competitors. An effective performance test accelerates lubricant degradation and forces the oil to its breaking point sooner than if tested in the field. This provides more data, faster.

The definition of “severe”

Given the severity of our testing, what happens when the equipment we test fails before our lubricants? Honestly, it causes us to simultaneously rejoice and curse. On one hand, we know our products withstand the toughest conditions we throw at them. On the other, we have to contend with the extra cost and hassle of test equipment that just isn’t built to handle the punishing conditions.

The August 2016 Tech Talk revealed how some two- and four-stroke equipment we’ve tested couldn’t stand up to our test conditions. We’ve run into the same predicament in the passenger car/light-truck market, too.

One recent incident involved the popular General Motors* 3.8L motor. Historically, the GM 3.8L is a rocksolid engine that’s powered millions of cars over the years. It’s a fixture in industry performance testing. One standardized test uses this engine under severe conditions for 100 hours. But our oils soldier through that test like a walk in the park, so we have to triple its length to 300 hours to get useful data. Not an easy task for equipment not designed to handle such extremes.

Well, we recently blew up a GM 3.8L engine. The image shows some of the carnage we found after removing the oil pan. All those bits and pieces used to be a piston.

We ran this test under extreme conditions, as if you were towing continuously at highway speeds uphill for weeks.

Unleaded gasoline

What happened, you ask? First, I’ll ease any concerns you might have: it wasn’t the oil’s fault. We were in uncharted territory, never having an oil last so long in this test before, so we knew we were on borrowed time. In fact, after more than four weeks of testing, the oil hadn’t even reached its breaking point. One of the exhaust valves broke off and fell into the cylinder, where it and the piston were pulverized into the mess you see here. As the piston and valve debris made its way to the oil pan, the crankshaft caught it and blew a hole in the side of the engine block. The severity of our test conditions combined with valve seat recession are to blame.

Years ago, lead was added to gasoline to, among other functions, lubricate the valve seats. Once lead was officially banned from gasoline, in 1996, the fuel no longer provided the same level of valve-seat protection. This lack of protection, combined with the extreme conditions of our test, invited valve recession. When valve seats recede, the valve no longer seats evenly. The result is a loss of heat-transfer that overheats and erodes the valve, as well as an uneven side load that causes the valve to bend slightly on every cycle. This onetwo punch eventually caused the valve to fail. We ran this test under extreme conditions, as if you were towing continuously at highway speeds uphill for weeks. Oil temperatures exceeded 300ºF. The extreme, 1,500ºF exhaust gas temperatures, combined with the constant stress of unevenly eroded valve seats, eventually led to valve failure, snapping a valve in half and destroying the engine.

But our oils soldier through that test like a walk in the park, so we have to triple its length to 300 hours to get useful data. Not an easy task for equipment not designed to handle such extremes.

Suitable for continued use

The good news, however, is the motor oil was still good. Even after hundreds of hours of operation so severe it destroyed the engine, the oil analysis still looked great. It made me smile to see our oil last that long, but it also made me cringe because we were going to have to once again re-test to try to get the oil to break.

This conundrum might present challenges to us engineers, but it amounts to you and your customers receiving the best synthetic lubricants available. We’re happy to keep blowing up engines in our mechanical lab to ensure your engines are protected out in the field.

Given the severe nature of our performance tests, the test equipment sometimes fails before our lubricants.

Can Your Motor Oil Handle the Seven Responsibilities of a Lubricant?

Can Your Motor Oil Handle the Seven Responsibilities of a Lubricant?

Most motorists understand the primary functions of motor oil: reduce friction and wear. However, motor oil and other lubricants must do more to protect your vehicles and equipment. With engines and equipment becoming more powerful and sophisticated, it takes a properly formulated, well-balanced lubricant to carry out these seven critical functions.


• Minimize Friction

Lubricants reduce contact between components, minimizing friction and wear.

• Clean

Lubricants maintain internal cleanliness by suspending contaminants within the fluid or by preventing the contaminants from adhering to components. Base oils possess a varying degree of solvency that assists in maintaining internal cleanliness. Solvency is the ability of a fluid to dissolve a solid, liquid or gas. While the solvency of the oil is important, detergents and dispersants play a key role. Detergents are additives that prevent contaminants from adhering to components, especially hot components such as pistons or piston rings. Dispersants are additives that keep contaminants suspended in the fluid. Dispersants act as a solvent, helping the oil maintain cleanliness and prevent sludge formation.

• Cool

Reducing friction minimizes heat in moving parts, which lowers the overall operating temperature of the equipment. Lubricants also absorb heat from contact surface areas and transport it to a location to be safely dispersed, such as the oil sump. Heat-transfer ability tends to be a trait of the base oil’s thickness – lighter oils tend to transfer heat more readily.

• Seal

Lubricants act as a dynamic seal in locations like piston rings and cylinder contact areas to prevent contamination.

• Dampen Shock

A lubricant can cushion the blow of mechanical shock. A highly functional lubricant film can resist rupture and absorb and disperse these energy spikes over a broad contact area. As the mechanical shock to components is dampened, wear and damaging forces are minimized, extending the component’s overall operating life.

• Protect

A lubricant must have the ability to prevent or minimize internal component corrosion. Lubricants accomplish this either by chemically neutralizing corrosive products or by forming a barrier between the components and the corrosive material.

• Transfer Energy

Because lubricants are incompressible, they can act as an energy-transfer medium, such as in hydraulic equipment or valve lifters in an automotive engine.

Lubricants do far more than simply protect against wear. High-quality lubricants – like AMSOIL synthetic lubricants – are formulated to excel in each of these critical areas, ensuring you get the most out of your vehicles and equipment.

New Motor Oil Specs are Coming

New Motor Oil Specs are Coming

As engine operating conditions grow more severe, so do the demands placed on your motor oil. New engine hardware such as turbochargers, direct injection and variable valve timing (VVT) place increased stress on your engine oil. You may find yourself asking, why do we need new engine hardware? What’s wrong with the tried-and-true equipment that has worked for years?

Well, automakers need every fuel economy gain under the sun they can get to meet tightening fuel-economy standards. And these new technologies help them get there.

More strict CAFE standards

The current corporate average fuel economy (CAFE) standard requires a fleet-wide average of 54.5 mpg by 2025 in the United States, a five percent annual improvement. These requirements have spurred the automotive industry to turn to the hardware mentioned above to build smaller, more fuel-efficient engines. In fact, by 2020, industry experts predict that almost every new vehicle will feature direct-injection technology (GDI). The vast majority will also be turbocharged (TGDI).

All upside, right?

Smaller, more-efficient engines that make the power and torque of their higher-displacement counterparts is all upside, right? In theory, maybe. But, in reality, today’s advanced engines undergo more severe operating conditions that can lead to…

  • Severe engine knock, also called low-speed pre-ignition (LSPI)
  • Increased engine temperatures
  • Compromised fuel injectors
  • Increased wear and deposits if the oil isn’t up to snuff

The biggest motor-oil-related challenge on the horizon is LSPI, also known as severe engine knock. LSPI can destroy pistons and connecting rods.

What is LSPI?

LSPI is the spontaneous ignition of the fuel/air mixture before spark-triggered ignition. It is another version of pre-ignition. Pre-ignition (engine knock) has been around since the beginning of internal combustion engines. LSPI, however, occurs under low-speed, high-torque conditions in TGDI engines, such as when taking off from a stoplight. This scenario can create conditions where the fuel/air ignites too early in the combustion cycle, throwing off the engine’s timing. The expanding combustion charge collides with the piston as it’s moving up the cylinder, potentially destroying the pistons or connecting rods.

How Does LSPI Occur?

Experts suggest the cause is due in part to oil/fuel droplets or deposits in the cylinder auto-igniting randomly. The droplets and deposits contain enough heat to ignite the air/fuel mixture before the spark-triggered ignition. This means oil formulation can play a role in reducing LSPI.

Testing has shown that certain motor oil ingredients can promote LSPI, while others can help reduce it. It’s tempting to think, “Well, dump a bunch of ingredients into your formulations that help reduce LSPI!” But some ingredients that help reduce LSPI have been limited over the years in motor oil formulations for other reasons.

It truly is a scientific balancing act confronting us oil formulators. It’s no easy task to formulate motor oils that deliver excellent wear protection, resist the increased heat of turbocharged engines, prevent deposits, act as a hydraulic fluid and, now, combat LSPI. The performance of the entire formulation – not just one or two ingredients – is what counts.

Coming Soon: New Oil Specifications

Difficult or not, next-generation motor oils will need to fight LSPI. In fact, they’ll need to pass an LSPI test to meet the new API SP and ILSAC GF-6 performance specifications set to take effect in mid-2019. General Motors is ahead of the game and requires oils to pass its own LSPI test. Its updated GM dexos1 specification (known as dexos1 Gen 2) is scheduled to take effect Aug. 31, 2017. The table explains the specs in a little more detail.

Relax…for now

For now, you don’t have to worry too much about LSPI. Your vehicle’s computer is programmed to avoid operating conditions that lead to LSPI. But, operating your engine under those conditions does promise fuel economy gains. And, once oils hit the market that combat LSPI, you can bet the vehicle manufacturers will reprogram their vehicles to take advantage in their never-ending quest for better fuel economy.

AMSOIL Prepared for the Change

We’ve been hard at work reformulating Signature Series Synthetic Motor Oil, XL Synthetic Motor Oil and OE Synthetic Motor Oil to address LSPI. The early signs are exciting. Experimental formulations of AMSOIL synthetic motor oils provided 100 percent protection against LSPI in turbocharged direct-injected engines.* Expect to see them hit the market in the months ahead.

Check out this page to learn more about LSPI.

*Based on the engine test required for GM dexos1 Gen2 specification.

Variable valve timing improves engine efficiency

Variable valve timing improves engine efficiency.

Quality oil is vital for keeping sensitive components clean and functioning properly.

Matt Erickson | TECHNICAL PRODUCT MANAGER, PASSENGER CAR

Variable valve timing (VVT) is one of the big-three engine technologies (along with turbocharging and direct fuel injection) automakers have turned to in the last several years to meet increasingly strict fuel-economy and emissions requirements without sacrificing vehicle performance.

Although it sounds complicated, VVT is based on the simple principle that engine efficiency can be increased by adjusting when the engine’s valves open and close. Say you’re cruising down the highway and approach a logging truck. As you depress the accelerator to pass, an engine with VVT can quickly adjust when the valves open, allowing the combustion chamber to fill with air and fuel more efficiently. This results in better torque, helping you easily pass the truck and be on your way. When you let off the accelerator, the VVT system adjusts the timing again relative to your driving conditions so the valves open and close in a way that returns optimum efficiency at lower engine speeds. Overall, the vehicle delivers increased torque and fuel economy while cutting emissions.

The keys to the system working are the components responsible for advancing or retarding valve timing in response to driving conditions. Although each system is slightly different, they all use motor oil as a hydraulic fluid to move the necessary components. Many accomplish this with cam phasers that provide extra rotation to the camshaft, thereby adjusting when the valves open and close. VVT components typically contain tiny openings through which the oil must flow in order to function properly, as you can see in the images. The solenoid pictured, from a 3.5L Ford* EcoBoost* engine, contains openings .007 of an inch across, which is about the thickness of two sheets of paper.

The keys to the system working are the components responsible for advancing or retarding valve timing in response to driving conditions. Although each system is slightly different, they all use motor oil as a hydraulic fluid to move the necessary components. Many accomplish this with cam phasers that provide extra rotation to the camshaft, thereby adjusting when the valves open and close. VVT components typically contain tiny openings through which the oil must flow in order to function properly, as you can see in the images. The solenoid pictured, from a 3.5L Ford* EcoBoost* engine, contains openings .007 of an inch across, which is about the thickness of two sheets of paper.

The keys to the system working are the components responsible for advancing or retarding valve timing in response to driving conditions. Although each system is slightly different, they all use motor oil as a hydraulic fluid to move the necessary components. Many accomplish this with cam phasers that provide extra rotation to the camshaft, thereby adjusting when the valves open and close. VVT components typically contain tiny openings through which the oil must flow in order to function properly, as you can see in the images. The solenoid pictured, from a 3.5L Ford* EcoBoost* engine, contains openings .007 of an inch across, which is about the thickness of two sheets of paper.

The solenoid directs oil flow based on a signal from the computer. Pressurized oil enters the middle ring (where most of the deposits are on the solenoid pictured). Then it sends oil out the top or bottom ring to advance or retard timing. In the case of this engine, deposits prevented oil from flowing properly. The computer detected incorrect valve timing, illuminating the check-engine light.

Even the slightest amount of deposits can lodge in these tiny openings and negatively affect the system. In some cases, dealerships view these problems as non-serviceable and recommend engine replacement instead of repairs.

The good news is, many VVT issues can be avoided simply with a combination of proper maintenance and high-quality oil and filtration. AMSOIL synthetic motor oil resists deposits and sludge better than conventional oils, helping keep sensitive VVT components clean and functioning properly. It also resists viscosity loss, meaning it consistently performs the duties of a hydraulic fluid, which is vital to proper operation of VVT components.

As an AMSOIL Dealer, having your customers’ best interests in mind is central to your business. The vast majority have VVT engines, so stress the importance of following the appropriate oilchange guidelines. Many engines with VVT are also turbocharged, including the EcoBoost from which this solenoid originated. Turbocharged engines automatically fall under our severe-service category, meaning customers who use Signature Series Synthetic Motor Oil can extend their drain intervals up to 15,000 miles, 700 hours or one year if they choose. Even if a customer is not interested in extended drain intervals, Signature Series is an excellent choice for maximum engine and turbocharger protection.

They should also be using AMSOIL Ea® Oil Filters. They offer a filtering efficiency of 98.7 percent at 20 microns. Twenty microns is roughly 10 times smaller than the openings in the solenoids pictured. Compared to conventional filters, Ea Oil Filters do a better job trapping and holding the deposits that could otherwise end up negatively affecting VVT components.

VVT systems aren’t going anywhere anytime soon. The challenges they present to motor oil are really opportunities in disguise. Selling a high-quality synthetic motor oil and advanced filters becomes easier when your customers realize the importance of superior protection to the life and performance of their vehicles.

VVT solenoids often contain tiny oil-flow passages that can easily clog with deposits if maintenance is neglected or low-quality oil or filters are used.