Skip to main content

Five reasons to use motorcycle oil in your bike

You can use Car Motor Oils in your Bike if you Add Two More Wheels.

You wouldn’t want to buy a used bike if motorcycle oil wasn’t used.

Impressive performance happens when you are using the right oil in the right application.

Len Groom | TECHNICAL PRODUCT MANAGER, POWERSPORTS

The results of a study from lubricant additive manufacturer Infineum caught my eye recently. A survey of 1,000 bikers revealed that fewer than 60 percent are using a motorcycle specific oil in their motorcycles. Interestingly, more than three quarters of respondents think they’re using a motorcycle oil. Clearly there’s confusion in the market that requires clarification.

Let’s start with why you should always use motorcycle oil in a motorcycle engine. I’ll boil it down to five key reasons.

1) Motorcycles run hotter

In general, automotive engines are water-cooled. A typical automotive engine can reach 235ºF (113ºC) during operation, which is plenty hot. Motorcycles, however, run even hotter, particularly big, air-cooled V-twins, like your average Harley Davidson. They rely on air flowing across the engine for cooling, which is inherently less efficient at dissipating heat. This configuration poses additional challenges in stop-and-go traffic when there’s little airflow, particularly on hot summer days. In fact, testing of a 2012 Harley Street Bob in our mechanical lab demonstrated an average cylinder head temp of 383ºF (195ºC).

Heat that intense causes some oils to thin and lose viscosity, which reduces wear protection. High heat also hastens chemical breakdown of the oil (called oxidation), which requires you to change oil more often. In extreme cases, the bike’s temperature sensors can shut down the engine if it gets too hot.

2) High rpm destroys lesser oils

Motorcycles tend to operate at engine speeds significantly higher than automobiles. Your average metric sport bike easily eclipses 10,000 rpm. Some have even pushed 20,000 rpm. Your car or truck’s redline doesn’t even come close. The hydrocarbon chains get ripped to shreds.. You can feel the after-effects through the peg and handle bars.

High rpm places additional stress on engine components, increasing the need for wear protection. It subjects oils to higher loading and shear forces, which can rupture the lubricant film and reduce viscosity, both of which increase wear. High rpm also increases the likelihood of foaming, which can reduce an oil’s load carrying ability, further inviting wear.

3) Increased power density = increased stress

Motorcycle engines produce more horsepower per cubic inch than automobiles. They also tend to operate with higher compression ratios. Increased power density and compression lead to higher engine temperatures and increased stress. This places greater demands on motorcycle oil to fight wear, deposits and chemical breakdown.

4) Must also protect transmission – prevent viscosity loss

Many motorcycles have a common sump supplying oil to both the engine and transmission. In such cases, the oil is required to meet the needs of both the engine and the transmission gears. Transmission gears can shear the oil as it’s squeezed between gear teeth repeatedly at elevated rpm, causing some oils to lose viscosity. Many motorcycles also incorporate a wet clutch within the transmission that uses the same oil. Motorcycle wet clutches require a properly formulated lubricant that meets JASO MA or MA2 frictional requirements.

5) Storage invites corrosion

Whereas automobiles are used almost every day, motorcycle use is usually periodic and, in many cases, seasonal. These extended periods of inactivity place additional stress on motorcycle oils. In these circumstances, rust and acid corrosion protection are of critical concern.

While a good passenger car motor oil (PCMO) hits many of these performance areas, it doesn’t get them all.

PCMOs usually contain friction modifiers to help boost fuel economy. Furthermore, PCMOs don’t meet JASO MA or MA2 requirements. If used in a motorcycle, they can interfere with clutch operation and cause slippage. And no rider wants to deal with a slipping clutch. Likewise, motor oils have no natural rust or corrosion resistance. Instead, corrosion inhibitors must be added to the formulation, and typical motor oils don’t contain them.

AMSOIL Synthetic Motorcycle Oil is designed for the unique demands of motorcycles. It’s formulated without friction modifiers for precise, smooth shifts. It also contains a heavy dose of corrosion inhibitors to protect your engine against rust during storage. And it’s designed to resist viscosity loss due to shear despite intense heat and the mechanical action of gears and chains.

Ensure your customers are using AMSOIL synthetic motorcycle oil in their bikes for the best protection this riding season.

And people who use car oil in their bikes probably use the term “drive” when referring to riding.

Solve ethanol issues before they arise

Ethanol Issues

Prevent Ethanol Issues Now

The fuel some love to hate isn’t the problem – letting gasoline sit too long is the real problem.

Len Groom | TECHNICAL PRODUCT MANAGER

How did an alternative fuel made mostly from corn grown in the Midwest become a political lightning rod?

Whatever the reason, ethanol is always a controversial topic. Some love it, citing its ability to reduce our dependence on foreign oil while supporting American jobs. Some hate it, saying it reduces fuel economy and wastes farmland that could be used to grow food.

I’ll leave that debate to someone else. Instead, I want to talk about the effect ethanol can have on fuel-system components, especially in powersports and lawn & garden equipment – and what you can do to avoid those problems.

What is ethanol?

But first, some background info. Ethanol is an alcohol fuel derived from plant materials, such as corn, barley or wheat. It’s mixed with gasoline at different ratios to produce the fuel you buy at the pump. Most of us are familiar with E10, which is gasoline that contains up to 10 percent ethanol. Today, E15 is becoming more common. And owners of flex-fuel vehicles designed to run on increased concentrations of ethanol can opt for E85.

The upside of ethanol

Years ago, lead was added to gasoline to, among other things, boost octane rating and help prevent engine knock. It turned out lead poisoned catalytic converters and harmed the environment, so it was replaced by methyl tert-butyl ether (MTBE). However, MTBE was shown to damage the environment if leaked or spilled. Today, ethanol has replaced MTBE as a more environmentally friendly means of boosting octane.

Fuel-system problems

That brings us to a major knock on ethanol – it’s propensity to degrade rubber and plastic fuel hoses and carburetor components. Ethanol can cause gaskets and fuel lines to harden, crack and then leak. It can also cause aluminum and brass fuel-system components to corrode and develop a white, flaky residue that clogs fuel passages. Some marina personnel I’ve talked to say up to 65 percent of their repair orders are attributed to fuel-system problems.

PHASE SEPARATION

Ethanol isn’t to blame

While ethanol has become a popular scapegoat for mechanics, especially in the marine industry, it isn’t the enemy – time is the enemy. Why do ethanolrelated problems affect powersports and lawn & garden equipment more than your car or truck? Because your boat or lawnmower can sit idle for weeks or even months. During that time, the fuel can absorb moisture since ethanol has an affinity for water. That’s why ethanolrelated problems are so common in marine applications. Water can break the molecular bond between gasoline and ethanol, causing the water/ethanol mixture to separate from the gasoline and fall to the bottom of the tank. This is known as phase separation, and you can see an example of it in the image above.

Phase separation causes a couple problems. The engine can draw the ethanol/ water mixture into the carburetor or injectors, leading to a lean-burn situation that can increase heat and damage the engine. In addition, the gasoline left behind no longer offers adequate resistance to engine knock since the ethanol that provides the increased octane the engine needs has separated from the gasoline. Burning low-octane gas can cause damage due to engine knock, especially in two-stroke engines. Finally, if your boat, lawnmower or other piece of equipment sits unused, the water/ethanol mixture can slowly corrode aluminum and brass fuel-system components, not to mention rubber and plastic fuel lines and gaskets. Eventually those components fail and require replacement.

Driving your car or truck almost every day doesn’t allow enough time for phase separation to occur, which is why we don’t see these issues nearly as often in the passenger car/light-truck market.

Prevention is the best solution

Although some fuel additives on the market claim to reverse the effects of phase separation, there’s no way to reintegrate gasoline and ethanol once they’ve separated. Instead, it’s best to prevent it.

One solution is to use non-oxygenated, ethanol-free gas in your powersports and lawn & garden equipment. It costs a little more, but it eliminates problems associated with ethanol. Another solution is to treat every tank of fuel and container of gas with AMSOIL Quickshot®. It helps keep water molecules dispersed in the fuel to prevent phase separation. It also cleans varnish, gums and insoluble debris while stabilizing fuel during short-term storage.

It’s a great way to avoid ethanol-related problems and keep your equipment protected. There’s nothing controversial about that.