Skip to main content

Steps To Maintain Your Snowblower – Things to Know

check belts from idle wear in the spring on snowblowers

Never Overlook This When Maintaining Your Snowblower

Thanksgiving day, 2016. While my family was gathered in my dining room, imbibing spirits and making merry, I was in the shed disassembling the carburetor on my snowblower, reeking of petroleum as rivers of gasoline flowed under my jacket cuffs and saturated me to the elbows.

Here’s what happened, and here’s how to avoid it.

Snowblower maintenance can be distilled to this Golden Rule: Maintain your fuel system.

I’ll say it again: Maintain your fuel system.

A snowblower that won’t start is almost always due to a fuel problem. And nothing raises your blood pressure like a dead snowblower following the season’s first snowstorm. You know it! We always wait to the last minute on that first snow.

Preventing fuel-system problems starts in the spring prior to storage.

Leave the carburetor full of gas

This is where everything unraveled for me. One theory says that shutting off the fuel line and running the engine until the carburetor empties helps prevent varnish that plugs the jets and prevents starting.

Wrong, at least in my case. As I discovered, leaving the carburetor empty and exposed to air hastens oxidation and varnish. Fluctuating temperatures and humidity throughout the summer invite varnish, and it doesn’t take much to plug the tiny orifices in a carburetor. Then, it’s just a matter of time before you’re stinking of gasoline on Thanksgiving day while blasting carb cleaner on everything within reach.

Instead, add fuel stabilizer at the end of the season, run the engine for a few minutes to distribute the treated gas throughout the system, then shut down the engine. Now you can shut off the fuel line for the summer. The treated fuel in the carburetor bowl provides protection and helps keep components clean.

Some people claim you should run the carburetor empty since the gas will evaporate anyway. That may be true, but evaporation takes time, and the carburetor will at least be protected in the interim.

Stabilize the gas

As mentioned, treat gas with stabilizer prior to storage. Stabilized fuel protects against oxidation and varnish throughout the summer.

Use ethanol-free gas

When water infiltrates your gas tank in the form of melted snow, it can cause phase separation, a phenomenon that occurs when the bond between ethanol (present in most gasoline sold today) and gasoline breaks. When this ethanol/water mixture enters the combustion chamber, it creates a lean-burn situation that can damage your engine.

For best performance, use 91-octane, non-oxygenated (ethanol-free) gas. Many gas stations offer non-oxygenated gas and advertise it for powersports and off-road use. It’s a little more expensive, but spending a few extra dollars a winter to help your $1,000 dollar machine run strong isn’t a factor, in my opinion. At the very least, use ethanol-free gas during storage to help ward off phase separation.

Perhaps test your gas to see if it is really and truly ethanol free. I know many who say “I never use ethanol” and after testing the source gasoline it turned out to be laced with ethanol! Put your gas in a glass jar and see if you see it separate over time. Sometime you need to shake it up.

(Find out how to fight ethanol problems in small engines.)

If you use ethanol-blended gas, consider continuous use of a fuel additive, such as AMSOIL Quickshot, formulated to address ethanol-related performance issues.

Change The Oil in the Spring

Used oil contains acids that can slowly corrode metal components. Prior to storage, change the oil to remove acidic byproducts and ensure maximum protection throughout the summer. After changing oil, I like to run the engine for a couple minutes to distribute oil throughout the lower end of the engine.

Fog the engine

Use fogging oil to protect the upper end (cylinder, piston, valves) from corrosion during storage. Remove the spark plug, which provides the perfect time to inspect its condition, and spray a little oil into the cylinder. Slowly pull the starter cord a few times to distribute the oil, then replace the plug.

Check the gear housing – It can fail!

Clean any debris from around the filler port on the auger gear housing, remove the plug and ensure the gear lube level is up to the top. If not, add the correct lubricant (check your owner’s manual for viscosity).

Inspect belt condition and linkages

Stressing a worn belt after it’s sat idle for months is a recipe for a breakdown. When a belt does break, it’s often while clearing the first big snowfall of the year. Spring is the prime time to check the condition of drive belts and linkages. It’s much easier and far more comfortable to crawl around your snowblower on a mild, spring day than in the winter.

One final word of advice: Keep an eye on the weather at the start of winter. When the forecast calls for the first snowstorm of the season, start your snowblower a few days early to ensure it’s ready to go.

That gives you plenty of time if your snowblower won’t start – like about two hours on Thanksgiving day – to fix any problems.

Lawnmower Won’t Start? Do this.

deposits and varnish in carburetor bowl

Lawnmower Won’t Start? Do this.

A lawnmower that won’t start, especially when taken from storage, is almost always due to one problem: bad gas.

Storing a lawnmower in the fall without adding gasoline stabilizer to the fuel tank can cause the fuel to break down and plug the fuel passages. If fixing that problem doesn’t help, there are a few other common maintenance practices to try, as we explain below.

Here’s what to do when your lawnmower won’t start

Replace the gas

Over time (like the six months your lawnmower sat in your garage over the winter), the lighter hydrocarbons in gas can evaporate. This process creates gums and varnish that dirty the carburetor, plug fuel passages and prevent gas from flowing into the combustion chamber.

The carburetor bowl below formed corrosion and deposits during storage, which can easily plug fuel passages and prevent the engine from starting.

Deposits and residue in carburetor bowl

Deposits and residue in carburetor bowl

Ethanol-containing gas can absorb water from the atmosphere, which can lead to phase separation, which occurs when ethanol and gas separate, much like oil and water. Ethanol that has absorbed enough moisture and has sat long enough can foul the fuel system and prevent the engine from starting.

No matter how many times you yank the starter cord and pollute the air with your advanced vocabulary, the lawnmower won’t start if it isn’t getting gas.

In extreme cases, evaporation of lighter hydrocarbons can change the gasoline’s composition enough to prevent it from igniting. The gas may be fueling the engine, but it doesn’t matter if it won’t ignite.

If you neglected to add gasoline stabilizer to the fuel prior to storage, empty the tank and replace with fresh gas. If the tank is nearly empty, simply topping off with fresh gas is often enough to get it started.

On some mowers, you can easily remove and empty the fuel tank. Sometimes that’s more trouble than it’s worth. In these cases, use a fluid extraction pump or even a turkey baster. (We keep them in the Sioux Falls location also)

Clean the carburetor

You’ve replaced the fuel, but your lawnmower still won’t start.

Next, try cleaning the carburetor. Remove the air filter and spray carburetor cleaner into the intake. Let it sit for several minutes to help loosen and dissolve varnish and gums.

On some carburetors, you can easily remove the float bowl. If equipped, first remove the small drain plug and drain the gas from the bowl. Remove the float bowl cover and spray the float and narrow fuel passages with carburetor cleaner.

This kind of “quick-and-dirty” carburetor cleaning is usually all it takes to get the gas flowing again and your lawnmower back to cutting grass.

If not, consider removing the carburetor from the engine, disassembling it and giving it a good cleaning. Be forewarned, however: taking apart a carburetor can lead to nothing but frustration for the uninitiated. Take pictures with your phone to aid in reassembly. Note the positions of any linkages or the settings of any mixture screws, if equipped.

If you’re at all reluctant, visit the servicing dealer instead. Also consider replacing the carburetor altogether. It’s a fairly simple process on most smaller mowers and it’s often less expensive than taking it to the dealer.

Clean/replace the air filter

With the air filter removed, now’s the perfect time to clean it. Tap rigid filters on a workbench or the palm of your hand to dislodge grass clippings, leaves and other debris. Direct compressed air from the inside of the filter out to avoid lodging debris deeper into the media.

Use soap and water to wash foam filters. If it’s been a few years, simply replace the filter; they’re inexpensive and mark the only line of defense against wear-causing debris entering your engine and wearing the cylinder and piston rings.

Check the spark plug

A dirty or bad spark plug may also be to blame. Remove the plug and inspect condition. A spark plug in a properly running four-stroke engine should last for years and never appear oily or burned. If so, replace it.

Use a spark-plug tester to check for spark. If you don’t have one, clip the spark-plug boot onto the plug, hold the plug against the metal cylinder head and slowly pull the starter cord. You should see a strong, blue spark. It helps to test the plug in a darkened garage. Replace the plug if you don’t see a spark or it appears weak.

While you’re at it, check the spark-plug gap and set it to the factory specifications noted in the lawnmower owner’s manual.

If you know the plug is good, but you still don’t have spark, the coil likely has failed and requires replacement.

Did you hit a rock or other obstacle?

We’ve all killed a lawnmower engine after hitting a rock or big tree root.

If your lawnmower won’t start in this scenario, you probably sheared the flywheel key. It’s a tiny piece of metal that aligns the flywheel correctly to set the proper engine timing. Hitting an immovable obstacle can immediately stop the mower blade (and crankshaft) while the flywheel keeps spinning, shearing the key.

In this case, the engine timing is off and the mower won’t start until you pull the flywheel and replace the key. It’s an easy enough job IF you have a set of gear pullers lying around the garage. If not, rent a set from a parts store (or buy one…there’s never a bad reason to buy a new tool) or visit the dealer.

My lawnmower starts, but runs poorly

If you finally get the lawnmower started, but it runs like a three-legged dog, try cleaning the carburetor with AMSOIL Power Foam. It’s a potent cleaning agent designed to remove performance-robbing carbon, varnish and other gunk from carburetors and engines.

Power Foam®

Buy AMSOIL Power Foam

Add gasoline stabilizer to avoid most of these problems

Which sounds better? Completing all these steps each year when your lawnmower won’t start? Or pouring a little gasoline stabilizer into your fuel tank?

Simply using a good gasoline stabilizer can help avoid most of the problems with a lawnmower that won’t start. AMSOIL Gasoline Stabilizer, for example, keeps fuel fresh up to 12 months. It helps prevent the lighter hydrocarbons from evaporating to reduce gum and varnish and keep the fuel flowing. It also contains corrosion inhibitors for additional protection.

Gasoline Stabilizer

Buy AMSOIL Gasoline Stabilizer

I have a five-gallon gas can in my garage from which I fuel two lawnmowers, two chainsaws, two snowblowers, a string trimmer, an ATV and the occasional brush fire. I treat the fuel with Gasoline Stabilizer every time I fill it so I never have to worry about the gas going bad and causing problems.

You can also use AMSOIL Quickshot. It’s designed primarily to clean carburetors and combustion chambers while addressing problems with ethanol. But it also provides short-term gasoline stabilization of up to six months.

How to Fight Ethanol Problems in Small Engines

Phase separation

How to Fight Ethanol Problems in Small Engines

 

In 2005, Congress instituted a new renewable fuel standard that you didn’t get to vote on. In response, refiners made a wholesale switch, removing methyl tertiary butyl ether (MTBE) and blending fuel with ethanol. Ethanol helps reduce petroleum use and greenhouse gas (GHG) emissions, well in special engines made for ethanol only – but you’re not suppose to know that..  (even though you end up using more fuel to make up for the losses). Derived from corn (Round-up ready which destroys our health), ethanol supports U.S. agriculture (as long as they don’t ask questions and buy the seed they are forced to) and helps support energy independence. (as if allowing private railways wouldn’t but competing with AMTRAK is against the law currently).

Ethanol, however, can cause a number of problems, particularly in small engines. These problems center on the two following issues:

1) Dissolving plastics and creating deposits

Ethanol is an excellent solvent and drying agent that dissolves old gum and varnish deposits from the gas tank and fuel lines. However, it can also dissolve plastic and create deposits. Honda states that the dissolved material can clog filters or pass through and leave deposits on fuel injectors, fuel pumps, fuel-pressure regulators, carburetor jets, intake tracts, valves and valve guides.

Small-engine manufacturer ECHO agrees, stating in its warranty that these deposits can lead to poor engine performance; loss of power; overheating; fuel vapor lock; improper clutch engagement caused by increased engine idle speeds, which allows cutting attachments to turn while the unit is idling; and premature deterioration of fuel lines, gaskets, carburetors and other engine components.

2) Ethanol and water don’t mix

Small engine manufactures have spent considerable time studying the relationship between ethanol and water.

The white flaky deposits in this carburetor are attributed to ethanol.

ECHO warns that ethanol will absorb a small amount of moisture and stay in suspension within the gasoline for a while. However, the ethanol will only absorb up to ¾ of an ounce of water in a gallon of gas before it reaches its saturation point. Once the ethanol has absorbed enough moisture to reach its saturation point, phase separation occurs. Phase separation means the ethanol and absorbed water drop to the bottom of the fuel container since it is heavier than the gas and oil, leaving the gasoline and oil mix to float on top of the tank. Most operators never notice water in the can when they refuel their equipment. The end result is often a carburetor ruined with rust and corrosion. These expensive repairs can cost more than $75 and are not typically covered by warranty.

Stihl stresses that the layer of gasoline left floating on top has a lower octane level than the original ethanol-gasoline blend, which can result in unstable engine operation, power loss and major engine failures.

Ethanol’s affinity for water explains why so many ethanol-related problems surface in the marine industry. In fact, some marina personnel say up to 65 percent of their service orders are attributable to fuel-system problems.

Combating ethanol problems

Although some fuel additives on the market claim to reverse the effects of phase separation, there’s no way to reintegrate gasoline and ethanol once they’ve separated. Instead, it’s best to prevent it.

One solution is to use non-oxygenated, ethanol-free gas in your small engines. It costs a little more, but it eliminates problems
associated with ethanol. Another solution is to treat every tank of fuel and container of gas with AMSOIL Quickshot. It helps keep water molecules dispersed in the fuel to prevent phase separation. It also cleans varnish, gums and insoluble debris while stabilizing fuel during short-term storage.

Quickshot was tested in fuel containing 10 percent ethanol. Controlled plugging of injectors showed a 70 percent flow improvement, while oxidation stability improved 44 percent over untreated fuel.

Regardless whether you’re pro- or anti-ethanol, we can all agree on the importance of taking care of our small engines.

Solve ethanol issues before they arise

Ethanol Issues

Prevent Ethanol Issues Now

The fuel some love to hate isn’t the problem – letting gasoline sit too long is the real problem.

Len Groom | TECHNICAL PRODUCT MANAGER

How did an alternative fuel made mostly from corn grown in the Midwest become a political lightning rod?

Whatever the reason, ethanol is always a controversial topic. Some love it, citing its ability to reduce our dependence on foreign oil while supporting American jobs. Some hate it, saying it reduces fuel economy and wastes farmland that could be used to grow food.

I’ll leave that debate to someone else. Instead, I want to talk about the effect ethanol can have on fuel-system components, especially in powersports and lawn & garden equipment – and what you can do to avoid those problems.

What is ethanol?

But first, some background info. Ethanol is an alcohol fuel derived from plant materials, such as corn, barley or wheat. It’s mixed with gasoline at different ratios to produce the fuel you buy at the pump. Most of us are familiar with E10, which is gasoline that contains up to 10 percent ethanol. Today, E15 is becoming more common. And owners of flex-fuel vehicles designed to run on increased concentrations of ethanol can opt for E85.

The upside of ethanol

Years ago, lead was added to gasoline to, among other things, boost octane rating and help prevent engine knock. It turned out lead poisoned catalytic converters and harmed the environment, so it was replaced by methyl tert-butyl ether (MTBE). However, MTBE was shown to damage the environment if leaked or spilled. Today, ethanol has replaced MTBE as a more environmentally friendly means of boosting octane.

Fuel-system problems

That brings us to a major knock on ethanol – it’s propensity to degrade rubber and plastic fuel hoses and carburetor components. Ethanol can cause gaskets and fuel lines to harden, crack and then leak. It can also cause aluminum and brass fuel-system components to corrode and develop a white, flaky residue that clogs fuel passages. Some marina personnel I’ve talked to say up to 65 percent of their repair orders are attributed to fuel-system problems.

PHASE SEPARATION

Ethanol isn’t to blame

While ethanol has become a popular scapegoat for mechanics, especially in the marine industry, it isn’t the enemy – time is the enemy. Why do ethanolrelated problems affect powersports and lawn & garden equipment more than your car or truck? Because your boat or lawnmower can sit idle for weeks or even months. During that time, the fuel can absorb moisture since ethanol has an affinity for water. That’s why ethanolrelated problems are so common in marine applications. Water can break the molecular bond between gasoline and ethanol, causing the water/ethanol mixture to separate from the gasoline and fall to the bottom of the tank. This is known as phase separation, and you can see an example of it in the image above.

Phase separation causes a couple problems. The engine can draw the ethanol/ water mixture into the carburetor or injectors, leading to a lean-burn situation that can increase heat and damage the engine. In addition, the gasoline left behind no longer offers adequate resistance to engine knock since the ethanol that provides the increased octane the engine needs has separated from the gasoline. Burning low-octane gas can cause damage due to engine knock, especially in two-stroke engines. Finally, if your boat, lawnmower or other piece of equipment sits unused, the water/ethanol mixture can slowly corrode aluminum and brass fuel-system components, not to mention rubber and plastic fuel lines and gaskets. Eventually those components fail and require replacement.

Driving your car or truck almost every day doesn’t allow enough time for phase separation to occur, which is why we don’t see these issues nearly as often in the passenger car/light-truck market.

Prevention is the best solution

Although some fuel additives on the market claim to reverse the effects of phase separation, there’s no way to reintegrate gasoline and ethanol once they’ve separated. Instead, it’s best to prevent it.

One solution is to use non-oxygenated, ethanol-free gas in your powersports and lawn & garden equipment. It costs a little more, but it eliminates problems associated with ethanol. Another solution is to treat every tank of fuel and container of gas with AMSOIL Quickshot®. It helps keep water molecules dispersed in the fuel to prevent phase separation. It also cleans varnish, gums and insoluble debris while stabilizing fuel during short-term storage.

It’s a great way to avoid ethanol-related problems and keep your equipment protected. There’s nothing controversial about that.

Why Jay Leno Is Angry About Ethanol In Gasoline

fight ethanol problems

Why Jay Leno Is Angry About Ethanol In Gasoline

Change is the one constant in life. It’s also difficult, because when there is a change – whether in technology or how we do things – there are often unforeseen consequences.  One of the changes that has been taking place is that since 2005, the U.S. government has mandated that gasoline contain ethanol, most of it derived from corn.  The aim of this policy, among other things, has purportedly been to reduce our nation’s dependence on foreign oil, though it may also be a way to utilize the excess corn of our megafarm corn growers. What this change has done is to set in motion a number of unintended consequences, from its impact on food prices to mechanical issues in our cars and other equipment with engines.

And this latter is what prompted comedian and car collector Jay Leno to write a somewhat impassioned column in Autoweek this month titled, “Can’t We Just Get Rid Of Ethanol?”

Leno argues that this change to ethanol in gasoline has damaging consequences for older cars. The piece begins with a paragraph about the rise in the number of old-car fires lately, stating that the cause is related to the corrosive nature of ethanol when in contact with fuel-pump diaphragms or old rubber hose lines.

Change is a challenge in any field of endeavor, which is why we depend on others to help make us aware of the consequences of change so that worst case scenarios can be avoided. When fuel injectors became the standard in modern engines it was soon learned that deposits on the injector tips needed to be managed. AMSOIL introduced P.i Performance Improver at that time to address this, a much cheaper solution than replacing injectors every time they fouled.

So it is that ethanol in gasoline is now recognized to be a serious issue due to a phenomenon called phase separation. Ethanol is susceptible to water intrusion; when water collects in the gas tank through condensation or other means, the bond between ethanol and gasoline can break because ethanol is hygroscopic (it likes water more than it likes gasoline).

When the ethanol bonds with moisture it sinks to the bottom of the fuel tank, which can create a whole host of problems, including the formation of gums, varnish and other insoluble debris that can plug fuel flow passages and negatively affect engine performance. When this ethanol/water mixture is pulled into the engine, it creates a lean-burn situation that increases combustion chamber temperatures and can lead to engine damage.

Four years ago AMSOIL earned a SEMA New Products award for Quickshot, a gasoline additive developed specifically to address this issue of phase separation. Though initially introduced in a smaller package size for small engines, AMSOIL more recently introduced a quart-sized bottle for automobiles that sitt idle for any length of time.

The more you know, the more you discover how important it is to stay current with the changes occurring all around us, especially when it involves something you’re passionate about like your cars.